АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Деформация

Читайте также:
  1. Деформация электрического поля проводником. Электростатическая защита
  2. Моральная деформация юриста: ее причины. Моральная ответственность
  3. Признаки крепостного строя и их деформация.

В твердых телах – аморфных и кристаллических – частицы (молекулы, атомы, ионы) совершают тепловые колебания около положений равновесия, в которых энергия их взаимодействия минимальна. При увеличении расстояния между частицами возникают силы притяжения, а при уменьшении – силы отталкивания (см. §3.1). Силы взаимодействия между частицами обусловливают механические свойства твердых тел.

Деформация твердого тела является результатом изменения под действием внешних сил взаимного расположения частиц, из которых состоит тело, и расстояний между ними.

Существует несколько видов деформаций твердых тел. Некоторые из них представлены на рис. 3.7.1.

Рисунок 3.7.1. Некоторые виды деформаций твердых тел: 1 – деформация растяжения; 2 – деформация сдвига; 3 – деформация всестороннего сжатия.

Простейшим видом деформации является деформация растяжения или сжатия. Ее можно характеризовать абсолютным удлинением Δ l, возникающим под действием внешней силы Связь между Δ l и F зависит не только от механических свойств вещества, но и от геометрических размеров тела (его толщины и длины).

Отношение абсолютного удлинения Δ l к первоначальной длине l образца называется относительным удлинением или относительной деформацией ε:

 

 

 

При растяжении ε > 0, при сжатии ε < 0.

Если принять направление внешней силы, стремящейся удлинить образец, за положительное, то F > 0 при деформации растяжения и F < 0 – при сжатии. Отношение модуля внешней силы F к площади S сечения тела называется механическим напряжением σ:

 

 

 

За единицу механического напряжения в СИ принят паскаль (Па). Механическое напряжение измеряется в единицах давления.

Зависимость между ε и σ является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси абсцисс откладывается относительное удлинение ε, а по оси ординат – механическое напряжение σ. Типичный пример диаграммы растяжения для металлов (таких как медь или мягкое железо) представлен на рис. 3.7.2.

Рисунок 3.7.2. Типичная диаграмма растяжения для пластичного материала. Голубая полоса – область упругих деформаций.

При малых деформациях (обычно существенно меньших 1 %) связь между σ и ε оказывается линейной (участок Oa на диаграмме). При этом при снятии напряжения деформация исчезает. Такая деформация называется упругой. Максимальное значение σ = σпр, при котором сохраняется линейная связь между σ и ε, называется пределом пропорциональности (точка a). На линейном участке выполняется закон Гука:

 

 

 

Коэффициент E в этом соотношении называется модулем Юнга.

При дальнейшем увеличении напряжения связь между σ и ε становится нелинейной (участок ab). Однако при снятии напряжения деформация практически полностью исчезает, т. е. восстанавливаются размеры тела. Максимальное напряжение на этом участке называется пределом упругости.

Если σ > σупр, образец после снятия напряжения уже не восстанавливает свои первоначальные размеры и у тела сохраняется остаточная деформация εост. Такие деформации называются пластическими (участки bc, cd и de). На участке bc деформация происходит почти без увеличения напряжения. Это явление называется текучестью материала. В точке d достигается наибольшее напряжение σmax, которое способен выдержать материал без разрушения (предел прочности). В точке e происходит разрушение материала.

Материалы, у которых диаграмма растяжения имеет вид, показанный на рис. 3.7.2, называются пластичными. У таких материалов обычно деформация εmax, при которой происходит разрушение, в десятки раз превосходит ширину области упругих деформаций. К таким материалам относятся многие металлы.

Материалы, у которых разрушение происходит при деформациях, лишь незначительно превышающих область упругих деформаций, называются хрупкими (стекло, фарфор, чугун).

Аналогичным закономерностям подчиняется и деформация сдвига (рис. 3.7.1 (2)). В этом случае вектор силы направлен по касательной к поверхности образца. Относительная деформация определяется безразмерным отношением Δ x / l, а напряжение – отношением F / S (сила, действующая на единицу площади поверхности). При малых деформациях

 

 

 

Коэффициент пропорциональности G в этом отношении называется модулем сдвига. Модуль сдвига для большинства твердых материалов в 2–3 раза меньше модуля Юнга. Например, у меди E = 1,1·1011 Н/м2, G = 0,42·1011 Н/м2. Следует помнить, что у жидких и газообразных веществ модуль сдвига равен нулю.

На рис. 3.7.1 (3) показана деформация всестороннего сжатия твердого тела, погруженного в жидкость. В этом случае механическое напряжение совпадает с давлением p в жидкости. Относительная деформация определяется как отношение изменения объема Δ V к первоначальному объему V тела. При малых деформациях

 

 

 

Коэффициент пропорциональности B в этой формуле называется модулем всестороннего сжатия.

Всестороннему сжатию могут подвергаться не только твердые тела, но и жидкости и газы. У воды B = 2,2·109 Н/м2, у стали B = 1,6·1011 Н/м2. На дне Тихого океана, на глубине порядка 4 км, давление p приблизительно равно 4·107 Н/м2. В этих условиях относительное изменение Δ V / V объема воды составляет 1,8 %, в то время как для стального тела оно составляет всего лишь 0,025 %, т. е. в 70 раз меньше. Твердые тела с их жесткой кристаллической решеткой значительно менее сжимаемы по сравнению с жидкостями, атомы и молекулы которых не так сильно связаны со своими соседями. Сжимаемость газов на много порядков выше, чем у жидкостей и твердых тел.

Величина модуля всестороннего сжатия определяет скорость звука в данном веществе (см. §2.7).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)