АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Свободное падение тел

Читайте также:
  1. Анкерсмит Ф. Р. История и тропология: взлет и падение метафоры. 1994
  2. Безработица, бедность, социальное выпадение (social exclusion)
  3. Бунт штурмовиков и падение Пфеффера
  4. Воспитание и падение Израиля
  5. ВЫПАДЕНИЕ ВОЛОС КАК РЕЗУЛЬТАТ ЗАШЛАКОВКИ ОГРАНИЗМА
  6. Лионская и Флоренстийская унии. Падение Константинополя
  7. Личность и масса в контексте большой истории («Падение Даира» А. Малышкина, «Бронепоезд 14 – 69» Вс. Иванова).
  8. Международные отношения в начале 2 мир войны. Нападение фашистской Германии на СССР и оборонит бои на терр Б.
  9. На свободное выражение мнения, контроль и конструктивную кри-
  10. Начало османских завоеваний. Падение Византии.
  11. Несвободное движение системы материальных точек
  12. ОБРАБОТКА ДАННЫХ: балл за совпадение

Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г. Галилей опытным путем установил с доступной для того времени точностью, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких.

Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение g оказывается неодинаковым, изменяясь примерно от 9,83 м/с2 на полюсах до 9,78 м/с2 на экваторе. На широте Москвы g = 9,81523 м/с2. Обычно, если в расчетах не требуется высокая точность, то принимают числовое значение g у поверхности Земли равным 9,8 м/с2 или даже 10 м/с2.

Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось OY вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу (***) §1.4, положив υ0 = 0, y 0 = h, a = – g. Обратим внимание на то, что если тело при падении оказалось в точке с координатой y < h, то перемещение s тела равно s = yh < 0. Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси OY. В результате получим:

  υ = – gt.  

Скорость отрицательна, так как вектор скорости направлен вниз.

   

Время падения t n тела на Землю найдется из условия y = 0:

 

 

 

Скорость тела в любой точке составляет:

   

В частности, при y = 0 скорость υn падения тела на землю равна

 

 

 

Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д.

Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью υ0. Если ось OY по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: y 0 = 0, υ0 > 0, a = – g. Это дает:

  υ = υ0gt.  

Через время υ0 / g скорость тела υ обращается в нуль, т. е. тело достигает высшей точки подъема. Зависимость координаты y от времени t выражается формулой

   

Тело возвращается на землю (y = 0) через время 2υ0 / g, следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна –υ0, т. е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх.

Максимальная высота подъема

 

 

 

 

Рисунок 1.5.1. Графики скоростей для различных режимов движения тела с ускорением a = – g.

На рис. 1.5.1 представлены графики скоростей для трех случаев движения тела с ускорением a = – g. График I соответствует случаю свободного падения тела без начальной скорости с некоторой высоты h. Падение происходило в течение времени t n = 1 с. Из формул для свободного падения легко получить: h = 5 м (все цифры в этих примерах округлены, ускорение свободного падения принято равным g = 10 м/с2).

График II – случай движения тела, брошенного вертикально вверх с начальной скоростью υ0 = 10 м/с. Максимальная высота подъема h = 5 м. Тело возвращается на землю через время 2 секунды.

График III – продолжение графика I. Свободно падающее тело при ударе о землю отскакивает (мячик), и его скорость за очень короткое время меняет знак на противоположный. Дальнейшее движение тела не отличается от случая II.

Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат направить вертикально вверх (ось OY), а другую (ось OX) - расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. На рис. 1.5.2 изображен вектор начальной скорости тела и его проекции на координатные оси.

Рисунок 1.5.2. Движение тела, брошенного под углом к горизонту. Разложение вектора начальной скорости тела по координатным осям.

Таким образом, для движения вдоль оси OX имеем следующие условия:

  x 0 = 0, υox = υ0 cos α, a x = 0,  

а для движения вдоль оси OY

  y 0 = 0, υoy = υ0 sin α, a y = – g.  

Приведем здесь некоторые формулы, описывающие движение тела, брошенного под углом α к горизонту.

Время полета:

   

Дальность полета:

   

Максимальная высота подъема:

   

 

Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)