|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Кинетическая энергия при поступательном и вращательном движенияхКинетической энергией тела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения). Кинетическая энергия поступательного движения
.
Кинетическая энергия вращательного движения
.
При сложном движении твёрдого тела его кинетическая энергия может быть представлена через энергию поступательного и вращательного движения:
.
Свойства кинетической энергии. 1. Кинетическая энергия является конечной, однозначной, непрерывной функцией механического состояния системы. 2. Кинетическая энергия не отрицательна: ЕК³ 0. 3. Кинетическая энергия системы тел равна сумме кинетических энергий тел, составляющих систему. 4. Приращение кинетической энергии тела равно работе всех сил, действующих на тело: .
3.4 Потенциальная энергия Потенциальная энергия системы – это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил. Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.
ЕП1 - ЕП2 = -DЕП = А12конс, .
Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.
.
Таким образом, потенциальная энергия системы в данном состоянии равна работе, совершаемой консервативной силой при переводе системы из данного состояния на нулевой уровень. Свойства потенциальной энергии. 1. Потенциальная энергия является конечной, однозначной, непрерывной функцией механического состояния системы. 2. Численное значение потенциальной энергии зависит от выбора уровня с нулевой потенциальной энергией. Как потенциальная энергия может быть найдена по известной консервативной силе, так и консервативная сила может быть найдена по потенциальной энергии:
,
причем
, , .
Примеры потенциальной энергии: 1) – потенциальная энергия тела массой m, поднятого на высоту h относительно нулевого уровня энергии в поле силы тяжести;
2) – потенциальная энергия упругого деформированного тела, Dх – деформация тела. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |