АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Динамика вращательного движения твердого тела

Читайте также:
  1. I. Предпосылки формирования профсоюзного движения.
  2. II. Зарождение и развитие профсоюзного движения в Англии.
  3. II. Расчет силы сопротивления движению поезда на каждом элементе профиля пути для всех заданных скоростях движения.
  4. V. Первые шаги профсоюзного движения США.
  5. А) Должны быть обращены против направления движения сточных вод.
  6. А32. Социальные движения в Греции в эллинистическое время. Реформы Агиса и Клеомена в Спарте.
  7. Анализ движения денежных средств прямым и косвенным методами.
  8. Анализ наличия, движения и структуры основных средств за 2008 г.
  9. Анализ обеспеченности предприятия трудовыми ресурсами и их движения
  10. Анализ обеспеченности предприятия трудовыми ресурсами. Показатели движения рабочей силы.
  11. Анализ состава и движения персонала предприятия
  12. Аргументы против возможности движения

 

Вращательное действие силы характеризуется моментом силы относительно точки (рис. 5а) и относительно оси (рис. 5б).

Для того чтобы определить момент силы относительно точки О, проведем из точки О радиус-вектор в точку приложения силы (рис. 5а). Моментом силы относительно точки О называется векторная физическая величина, равная векторному произведению радиуса-вектора на силу :

 

 

Модуль момента силы M = r×F×sina = F×d, где d = r×sina – плечо силы.

Для того чтобы определить момент силы относительно оси Z, выберем на оси Z произвольную точку, найдем момент силы относительно этой точки, а затем спроецируем на ось Z момент силы относительно точки. Таким образом, момент силы относительно оси – величина скалярная.

Разложим силу на три составляющие (рис. 5б):

– осевая, параллельная оси вращения,

– радиальная, перпендикулярная оси вращения,

– касательная, перпендикулярная и оси вращения.

Составляющую можно определить как проекцию силы на направление вектора , направленного по касательной к окружности радиусом R, проведенной через точку приложения силы перпендикулярно оси вращения. Направление вектора образует с осью Z правовинтовую систему.

Составляющие и вращения тела относительно оси Z не вызывают. Вращающее действие силы обусловлено составляющей . Можно показать, что момент силы относительно оси Z

 

 

Рис. 5

Инертные свойства тела при вращательном движении характеризует м омент инерции. Он зависит от распределения массы тела относительно оси вращения. Момент инерции материальной точки массой m, находящейся на расстоянии r от оси: .

 

– момент инерции системы материальных точек;

 

– момент инерции тела, где – плотность тела.

 

Рис. 6

 

Момент инерции тела относительно произвольной оси может быть рассчитан по теореме Штейнера: моментинерции тела относительно оси O'O равен сумме момента инерции тела относительно оси, проходящей через центр инерции и параллельной O'O, и произведения массы тела на квадрат расстояния между осями (рис. 6):

 

.

 

Моментом импульса материальной точки относительно некоторой точки называется векторная величина, равная векторному произведению радиуса-вектора на импульс материальной точки (рис. 7а):

.

 

Моментом импульса системы материальных точек называется геометрическая сумма моментов импульсов точек, составляющих систему:

 

.

 

Моментом импульса материальной точки относительно оси Z называется скалярная величина, равная проекции момента импульса относительно произвольной точки, лежащей на оси Z, на эту ось. Аналогично моменту силы относительно оси, момент импульса относительно оси Z

 

 

где pt – проекция импульса на направление вектора , направленного по касательной к окружности радиусом, проведенной через материальную точку перпендикулярно оси вращения (рис. 7б). Направление вектора образует с осью Z правовинтовую систему.

 

Рис. 7

Момент импульса тела относительно оси вращения

 

LZ = IZ×wZ,

 

где IZ – момент инерции тела относительно оси Z, wZ – проекция угловой скорости тела на ось Z. Для однородного тела, вращающегося относительно оси симметрии:

 

.

 

Основной закон динамики вращательного движения:

Скорость изменения момента импульса тела относительно оси равна результирующему моменту внешних сил относительно этой же оси (проекция углового ускорения на ось пропорциональна результирующему моменту внешних сил относительно оси и обратно пропорциональна моменту инерции тела относительно этой же оси):

 

 

Из законов динамики поступательного и вращательного движений следует условие равновесия тел:

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.)