|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Момент инерции стержня относительно перпендикулярной осиdJ=dm*r^2 = (Ro)Sr^2dr dm=Sdr*(Ro) J = 2*(Ro)*S * int (0-L/2) r^2dr = 2*(Ro)*S*r^3/3 | (0-L/2) = m*L^2/12 Кинетическая энергия вращения Пусть есть объект m 1, m 2 ,..., mn, находящиеся на расстоянии r 1, r 2,..., rn от оси вращения. При вращении твердого тела относительно неподвижной оси отдельные его элементарные объемы массами mi, опишут окружности различных радиусов ri и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова: w = v 1 /r 1 = v 2 /r 2 =... = vn/rn. (17.1) Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:
Используя выражение (17.1), получим
где Jz — момент инерции тела относительно оси 2. Таким образом, кинетическая энергия вращающегося тела Tвр = Jzw2/2. (17.2) Уравнение динамики вращательного движения твердого тела Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25): M = [ rF ]. Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к F. Модуль момента силы M = Frsina= Fl, (18.1) где a — угол между г и F; rsina = l — кратчайшее расстояние между линией действия силы и точкой О — плечо силы. Моментом силы относительно неподвижной оси z называется скалярная величина Мz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси 2 (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси z. Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью: М z = [ rF ]z. Найдем выражение для работы при вращении тела (рис.27). Пусть сила F приложена в точке В, находящейся от оси вращения на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь ds= rdj, и работа равна произведению проекции силы на направление смещения на величину смещения: dA=F sinardj. (18.2) Учитывая (18.1), можем записать dA=Mzdj, где Fr sina = Fl =Mz — момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота. Работа при вращении тела идет на увеличение его кинетической энергии: dA = dT, но Учитывая, что w=dj/dt, получим Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |