АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Прямая и обратная задачи над шаром

Читайте также:
  1. I СИТУАЦИОННЫЕ ЗАДАЧИ ПО ПРОФИЛЬНЫМ РАЗДЕЛАМ
  2. I. ОСНОВНЫЕ ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ КПРФ, ПРАВА И ОБЯЗАННОСТИ ПАРТИИ
  3. I. Цель и задачи изучения дисциплины
  4. II. ЦЕЛИ И ЗАДАЧИ
  5. II. Цели и задачи Конкурса
  6. II. Цели и задачи учебно-ознакомительной практики
  7. II. ЦЕЛИ, ЗАДАЧИ И НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ КЛУБА
  8. II. ЦЕЛИ, ЗАДАЧИ, ПРЕДМЕТ И ВИДЫ ДЕЯТЕЛЬНОСТИ ОРГАНИЗАЦИИ
  9. III. Задачи ОЦП
  10. III. Основные задачи Управления
  11. N-мерное векторное пространство действительных чисел. Задачи
  12. V. СИТУАЦИОННЫЕ ЗАДАЧИ

Для практических занятий.

1. Прямая задача. Пусть однородный шар радиуса и плотности расположен на глубине в среде с плотностью (для простоты центр находится на оси z, а наблюдения проводятся по оси x в точке P) (рис. 1.3).

Рис.1.3 Гравитационное поле шара

Формула для вычисления может быть получена из (1.6) - (1.9) путем замены элемента массой шара в силу того, что притяжение однородным шаром происходит так, как если бы вся масса была сосредоточена в центре шара. Учтя, что x'=y'=0, z'=h, y=z=0, получим для шара

(1.11)


График будет иметь максимум над шаром (x =0) и асимптотически стремиться к нулю при удалении от шара. В плане изолинии будут иметь вид концентрических окружностей.

Вторая производная (градиент аномалии по профилю наблюдений) равна:


Вид кривой Wxz может быть легко получен путем графического построения из кривой . График Wxz имеет перед шаром максимум, за шаром - минимум, над центром шара - ноль.

2. Обратная задача. Из (1.11) максимум над центром шара (x =0) равен .

Для точки, удаленной от максимума на расстояние x1/2, имеющей , можно записать следующее уравнение:


Решив последнее уравнение, получим формулу для определения глубины залегания центра шара h=1,3x1/2. Зная , легко найти избыточную массу (): .

Так как то, зная избыточную плотность , можно рассчитать объем () и радиус шара (). Так, радиус равен:


где - в миллигалах, - в метрах, - в тоннах / куб. метр (г/см3).


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)