АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Процессы преобразования в волосковых клетках

Читайте также:
  1. C.I Процессы с ключевых точек зрения
  2. L.3.1. Процессы переноса вещества и тепла.
  3. L.3.2. Процессы присоединения частиц. Механизмы роста.
  4. V1: Переходные процессы в линейных электрических цепях, методы анализа переходных процессов
  5. V1: Процессы в сложных электрических цепях, цепи с распределенными параметрами
  6. АДАПТИВНЫЕ ПРОЦЕССЫ В СОЦИАЛЬНОЙ РАБОТЕ И МЕТОДИКА ИХ РЕГУЛИРОВАНИЯ
  7. Американские процессы
  8. БЕЛКОВЫЙ ПОРОШОК И ПРОЦЕССЫ ПРОИЗВОДСТВА
  9. Влажный воздух. i – d диаграмма и процессы в ней. Сухие и мокрые воздухоохладители. Методика расчета.
  10. Восстановительные процессы в организме, формы регенерации.
  11. Вспомогательные процессы жизненного цикла
  12. Второе начало термодинамики и циклические процессы

Как говорилось в предыдущем разделе, благодаря

механическим свойствам улитки определенная звуковая частота вызывает колебания базилярной мембраны с достаточной для возбуждения сенсорных клеток амплитудой только в одном, строго ограниченном месте. Поскольку базилярная и текториальная мембраны движутся относительно друг друга, возникает действующее на реснички сдвиговое усилие-как при прямом их контакте с текториальной мембраной, так и в результате перемещения субтекториальной лимфы; в обоих случаях их изгибание служит адекватным стимулом для слуховых рецепторов (как у вестибулярных рецепторов).

Это изгибание запускает процесс преобразования (трансдукции): микроскопические механические деформации ресничек приводят к открытию ионных каналов в мембране волосковых клеток и, следовательно, к их деполяризации. Ее предпосылкой служит наличие эндокохлеарного потенциала. Микроэлектродные измерения показали, что у эндолимфатического пространства положительный (приблизительно + 80 мВ) заряд относительно вестибулярной лестницы и других внеклеточных пространств организма. Сосудистая полоска и кортиев орган несут отрицательный заряд (~ —70 мВ; рис. 12.10). Потенциалы, регистрируемые в кортиевом органе, вероятно, соответствуют внутриклеточным потенциалам волосковых и опорных клеток. Положительный эндокохлеарный потенциал обеспечивается энергозависимыми процессами в сосудистой полоске. Сдвиг ресничек при стимуляции изменяет сопротивление мембраны волосковых клеток в результате открытия ионных каналов. Поскольку между эндо-


 

Рис. 12.10. Постоянные потенциалы улитки
Рис. 12.11. Микрофонный потенциал улитки (МП) и составной потенциал действия (СПД) слухового нерва, зарегистрированные у круглого окна при звуке щелчка

лимфатическим пространством и их внутриклеточной средой существует значительная разность потенциалов (не менее 150 мВ), синхронно со стимулом возникают локальные ионные токи, меняющие мембранный потенциал волосковых клеток, т.е. генерирующие рецепторный потенциал (так называемая гипотеза батареи) [7, 29, 48]. Зарегистрировать его трудно, но возможно [7, 29, 48]. Проще все же, поместив макроэлектроды вблизи рецепторов в барабанную лестницу или на круглое окно, записать микрофонный потенциал улитки (рис. 12.11).

Онаналогичен выходному напряжению микрофона и достаточно точно отражает изменения звукового давления. Магнитофонная запись речи, выполненная путем подключения к микрофонному потенциалу подопытного животного, вполне разборчива. Происхождение этого потенциала неясно; первоначальное предположение о том, что он состоит из регистрируемых внеклеточно компонентов репепторных потенциалов волосковых клеток, уже не вполне приемлемо. Как показали внутриклеточные отведения из внутренних и наружных воло-


ГЛАВА 12. ФИЗИОЛОГИЯ ЧУВСТВА РАВНОВЕСИЯ, СЛУХА И РЕЧИ 291


сковых клеток [7, 33, 34], хотя рецепторные потенциалы ими и генерируются, при высокой частоте стимулов регистрируется только постоянное напряжение: мембранный потенциал волосковых клеток не меняется синхронно с высокочастотным звуком. Микрофонный же потенциал:

1) синхронен звуковому стимулу практически без латентного периода;

2) лишен рефрактерного периода;

3) лишен измеримого порога;

4) не подвержен утомлению; т.е. во всех отношениях отличается от нейронного потенциала действия.

Деполяризация волосковых клеток вызывает выброс из их базальной части медиатора (возможно, глутамата [38]), возбуждающего афферентные нервные волокна. Когда около уха раздается щелчок (короткий импульс давления), волокна слухового нерва активируются синхронно и от круглого окна, помимо микрофонного, можно записать еще и составной потенциал действия. Более длительные звуки вызывают асинхронную импульсацию, не суммирующуюся в отдельные потенциалы действия. На рис. 12.11 показаны микрофонный потенциал улитки (МПУ) и составной потенциал действия (СПД), вызванные щелчком. Они были зарегистрированы на кошках, однако их можно записать и у человека, когда в диагностических целях электрод пропускают через барабанную перепонку и подводят к круглому окну.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)