|
|||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Метод касательныхМетод касательных, иначе метод Ньютона впервые был предложен английским физиком, математиком и астрономом Исааком Ньютоном, под именем которого и обрел свою известность. Идея, на которой основан метод касательных, аналогична той, которая реализована в методе хорд, только в качестве прямой берется касательная, проводимая в текущей точке данной функции f(x). В одной из точек промежутка [a;b], в котором находится корень уравнения, например с, проведем касательную.
Уравнение этой прямой y=kx + m. Так как данная прямая является касательной и проходит через точку , то Отсюда следует: Найдем точку пересечения касательной с осью Х: Если , то требуемая точность достигнута и x – корень уравнения; иначе, переменной с необходимо присвоить x, провести касательную через новую точку с и так продолжать до тех пор, пока . Осталось решить, что выбрать в качестве начального приближения с. В этой точке должны совпадать знаки функции и её второй производной. А так как нами сделано допущение, что вторая и первая производные не меняют знак, то можно проверить условие на обоих концах интервала и в качестве начального приближения взять ту точку, где оно выполняется. Блок-схема метода касательных
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |