АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

Читайте также:
  1. II.1.1 Разновидности метонимии и ее функция в процессе создания газетной экспрессии
  2. Анализ временного ряда на стационарность (автокорреляционная функция)
  3. АРГУМЕНТ, ФУНКЦИЯ
  4. Артериолы, капилляры, венулы: функция и строение. Органоспецифичность капилляров. Понятие о гистогематическом барьере.
  5. Банк правительства как функция ЦБ
  6. В). каталитическая функция
  7. Волновая функция. Уравнение Шредингера
  8. ВЫДЕЛИТЕЛЬНАЯ (ЭКСКРЕТОРНАЯ) ФУНКЦИЯ СЛЮННЫХ ЖЕЛЕЗ. УЧАСТИЕ СЛЮННЫХ ЖЕЛЕЗ В ПОДДЕРЖАНИИ ГОМЕОСТАЗА ОРГАНИЗМА.
  9. Выделительная функция печени и желудочно-кишечного тракта
  10. ГЛАВА 14 ФУНКЦИЯ СЛЕЗООТВЕДЕНИЯ, МЕТОДЫ ИССЛЕДОВАНИЯ ПРОХОДИМОСТИ СЛЕЗНЫХ ПУТЕЙ. ПАТОЛОГИЯ СЛЕЗНЫХ ОРГАНОВ
  11. ГЛАВА1.7. УРАВНЕНИЯ ЧЕТЫРЕХПОЛЮСНИКА В ГИПЕРБОЛИЧЕСКИХ ФУНКЦИЯХ
  12. ГОЛОС, КАК ФУНКЦИЯ

ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ

Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y ' из уравнения y=f(x), то можно:

1. Прологарифмировать обе части уравнения (по основанию е) ln y = ln f(x) = j(x).

2. Продифференцировать обе части равенства, считая ln y сложной функцией от переменной x: .

3. Выразить y ' = y ·j'(x) = f(x) ·(ln x)'.

Примеры.

1. y = x a – степенная функция с произвольным показателем.

.

2.

 

ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ

Показательно-степенной функцией называется функция вида y = uv, где u=u(x), v=v(x).

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)