АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Техническая концепция энергоснабжения

Читайте также:
  1. VIII. ИНЖЕНЕРНО-ТЕХНИЧЕСКАЯ ПОДГОТОВКА
  2. Автотехническая экспертиза
  3. Будущее СНГ. Концепция дальнейшего развития СНГ 2007 г.: приоритетные направления деятельности СНГ.
  4. Викинги: Миф и эпоха. Средневековая концепция эпохи викингов
  5. Вопрос 78: Техническая скорость, скорость сообщения и эксплуатационная скорость движения автобуса.
  6. Глава 6. Психотехническая организация процесса построения ЛПС-ЛЗС.
  7. Глава 8. Психонетика: научно-техническая революция или контрреволюция?
  8. Действие 4. Техническая защита персональных данных
  9. Диалектика как философская концепция развития: принципы, законы, категории.
  10. Дизайн-концепция товара
  11. Динамика развития основных фондов и техническая вооруженность предприятий лесного комплекса. Использование основных фондов, показатели использования.
  12. Е гг. ХХ в. Концепция социализации – «Профессиональный человек».

 

Современная техническая концепция энергоснабжения опирается на инженерные идеи и теорию конца XIX века, включающую принципы производства переменного тока, его потребления электроприводом, преобразования с помощью трансформаторов, сети высокого и низкого напряжения и принцип параллельного, а не последовательного подключения конечного потребителя. Эти основные принципы и позволили создать развитые системы энергоснабжения как в Европе, так и во всем развитом мире. Дальнейшее развитие технической мысли добавило в эту схему высокопроизводительные, но при этом удаленные на значительное расстояние от потребителей электростанции. Такие станции соединялись как друг с другом, так и с различными обобщенными потребителями (например, энергосистемой городов) посредствам воздушных или подземных линий передачи электричества, что в конечном счете улучшило соотношение между спросом и предложением и повысило качество. Сначала основным источником топлива были углеводороды и энергия падающей воды, впоследствии к ним добавилась ядерная энергия.

Потери при передаче электроэнергии напрямую связаны с применяемым напряжением электрического тока, поэтому для целей передачи на расстояние стремятся применить наибольшее возможное напряжение с учетом нагрузки и организации сети. Такое преобразование электрической энергии по напряжению – сначала его увеличение в месте производства, а затем обратное снижение в районе потребления – осуществляется при помощи трансформаторов, которые стали неотъемлемой и весьма важной частью любой энергосистемы.

Уровень энергоэффективности определяют два европейских стандарта:[7]

1. HD428: Трехфазные распределительные трансформаторы с рабочей частотой 50 Гц от 50 до 2500 кВ•А с масляным охлаждением и максимальным напряжением не выше 36 кВ;

2. HD538: Трехфазные распределительные трансформаторы с рабочей частотой 50 Гц от 100 до 2500 кВ•А с охлаждением сухого типа и максимальным напряжением не выше 36 кВ.

Согласно стандарту HD428 для распределительных трансформаторов с масляным охлаждением и максимальным напряжением до 24 кВ основными параметрами (показателями) энергетической эффективности являются приведенные в таблице 2 нормы потерь короткого замыкания (к.з.) и «холостого хода» (х.х.). Для масляных трансформаторов допускается три уровня потерь к.з. (А, В и С) и три уровня потерь х.х. (А’, В’ и С’), которые определяются по специальной методике с определенным допуском на погрешность. Авторы цитируемого исследования указывают, что общепринятого критерия энергоэффективности распределительного трансформатора пока нет. Возьмем на себя смелость утверждать, что в качестве такового стоит принять уровень суммарных потерь в трансформаторе (сумма потерь к.з. и потери и потерь холостого хода). По этому же показателю стоит устанавливать и класс энергоэффективности силового распределительного трансформатора.

Потенциальные механизмы внедрения энергоэффективных трансформаторов в ЕС:

-директивное введение минимальных требований по энергоэффективности применительно ко всем видам и типам распределительных трансформаторов;

-применения субсидирования, налоговых льгот и фискальной ответственности за потери;

-применение простой системы потребительской маркировки, иллюстрирующей степень энергоэффективности изделий для различных профилей нагрузок;

-стимулирование создания клубов потребителей силовых распределительных трансформаторов, где реализуется программа демонстраций коллективных закупок со скидками от производителей;

-создание и распространение среди мелких потребителей пособий с методикой рационального выбора силового распределительного трансформатора.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)