АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Химические методы основаны на непосредственном определении количества вещества или его концентрации в реакционном сосуде

Читайте также:
  1. B) должен хорошо знать только физико-химические методы анализа
  2. E) созданию противоядия к токсичным веществам
  3. I. Естественные методы
  4. L.3.1. Процессы переноса вещества и тепла.
  5. V. Способы и методы обеззараживания и/или обезвреживания медицинских отходов классов Б и В
  6. V1: Методы анализа электрических цепей постоянного тока
  7. V1: Переходные процессы в линейных электрических цепях, методы анализа переходных процессов
  8. V2: МЕТОДЫ ГИСТОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
  9. V2: Цитология и методы цитологии
  10. VII. Расчет количества электроэнергии, потребляемой электровозом из контактной сети.
  11. VIII. Расчет количества электроэнергии, потребляемой системой электрической тяги из единой энергосистемы страны.
  12. А) количества потребленных ресурсов

Чаще всего для этих целей используют такие виды количественного анализа как титриметрия и гравиметрия. Если реакция протекает медленно, то для контроля за расходованием реагентов через определённые промежутки времени из реакционной среды осуществляют отбор пробы. Затем определяют в них содержание нужного вещества. Например, титрованием щёлочью определяют количество кислоты в системе по мере протекания реакции

 

R1 – COOH + R2 – OH → R1 – COO – R2 + H2O

 

Если реакция протекает с большой скоростью, то для отбора пробы её останавливают с помощью резкого охлаждения, быстрого удаления катализатора, разбавления либо перевода одного из реагентов в нереакционное состояние.

Химические методы анализа отличает простота, доступность и хорошая точность.

В современной экспериментальной кинетике чаще всего используют физико-химические методы анализа. Они позволяют контролировать изменение концентрации вещества непосредственно в ходе протекания реакции, не останавливая её и не делая отбора пробы. Эти методы основаны на измерении какого-либо физического свойства системы, меняющегося во времени и зависящего от количественного содержания в ней определённого соединения; например: давления (если в реакции участвуют газы), электропроводности, показателя преломления, спектра поглощения реагента или продукта реакции в ультрафиолетовой, видимой либо инфракрасной областях. Широко используются спектры электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР).

Применение спектральных методов основано на том, что поглощение электромагнитного излучения пропорционально количеству вещества или его концентрации в системе.

Обычно экспериментально изучают реакции в замкнутой системе (т.е. при постоянном объёме) и представляют результаты графически в виде так называемой кинетической кривой, выражающей зависимость концентрации реагента или продукта реакции от времени t. Аналитический вид этой зависимости называется уравнением кинетической кривой. В отличие от основного кинетического уравнения, уравнения кривых расходования реагирующих веществ (или накопления продуктов реакции) содержат в качестве параметров начальные концентрации компонентов (С0) в момент времени t=0.

Из этих уравнений выводят формулы для расчёта константы скорости реакции и времени полупревращения (t½) – промежутка времени, в течение которого расходуется половина взятого исходного вещества, т.е. его концентрация уменьшится в 2 раза и станет равной Со/2.

В реакциях нулевого порядка концентрация исходного вещества линейно уменьшается со временем (рис. 37)

 

 

Рис. 37. Изменение концентрации исходного вещества от времени в реакции нулевого порядка

 

Математически данная линейная зависимость запишется следующим образом

С = С0 – kt

где k – константа скорости, С0 – начальная молярная концентрация реагента, С – концентрация в момент времени t.

 

Из неё можно вывести формулу для расчёта константы скорости химической реакции нулевого порядка.

 

k = (C0 – C).

Константа скорости нулевого порядка измеряется в моль/л ∙ с (моль · л-1· с-1).

Время полупревращения для реакции нулевого порядка пропорционально концентрации исходного вещества

 

t½ =

 

Для реакций первого порядка кинетическая кривая в координатах С, t носит экспоненциальный характер и выглядит следующим образом (рис. 38) Математически данная кривая описывается следующим уравнением

 

С = С0e-kt

 

Рис. 38. Изменение концентрации исходного вещества от времени в реакции первого порядка

На практике для реакций первого порядка кинетическую кривую чаще всего строят в координатах ℓnC, t. В этом случае наблюдается линейная зависимость ℓnС от времени (рис. 39)

 

ℓn С = ℓnС0 – kt

 

Рис. 39. Зависимость логарифма концентрации реагента от времени протекания для реакции первого порядка

 

Соответственно, величину константы скорости и время полупревращения можно рассчитать по следующим формулам

 

k = ℓn или k = 2,303 ℓg

(при переходе от десятичного логарифма к натуральному).

t½ =

Константа скорости реакции первого порядка имеет размерность t –1, т.е. 1/с и не зависит от единиц измерения концентрации. Она показывает долю, которую составляют молекулы, вступившие в реакцию за единицу времени, от общего числа молекул реагента в системе. Таким образом, в реакциях первого порядка за одинаковые промежутки времени расходуются одинаковы доли взятого количества исходного вещества.

Второй отличительной особенностью реакций первого порядка является то, что t½ для них не зависит от начальной концентрации реагента, а определяется только константой скорости.

Вид уравнения зависимости концентрации от времени для реакций второго порядка рассмотрим только для простейшего случая, когда в элементарном акте участвуют 2 одинаковые молекулы, или молекулы разных веществ, но начальные концентрации их (С0) равны. При этом линейная зависимость наблюдается в координатах 1/С, t (рис. 40). Математическое уравнение этой зависимости запишется следующим образом

 

= + kt

 

Рис. 40. Зависимость величины обратной концентрации реагента от времени для реакции второго порядка

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)