АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Ознаки подільності на 2 і 5, 4 і 25, 3 і 9, на складені числа

Читайте также:
  1. B) Числа
  2. V. Змішані ознаки.
  3. Адміністративні правопорушення, що посягають на власність. Ознаки відмежування їх від злочинів проти власності. Ведення адвокатом таких справ.
  4. Алгоритм, использующий разложение числа на простые множители
  5. Алфавит Maple-языка и его синтаксис. Основные объекты (определение, ввод, действия с ними). Числа. Обыкновенные дроби.
  6. Біохімічні ознаки
  7. Біохімічні ознаки
  8. Брячислав
  9. Відмінні ознаки філії та представництва
  10. Власні числа та власні вектори матриці.
  11. Влияние числа импульсов генератора на свойства растворов
  12. Встановіть послідовність збільшення числа неспарених електронів

Ознаки подільності на 2, 3, 4, 5, 9 чисел, записаних у десятковій системі числення, відомі з математики середньої школи. Обґрунтуємо ці ознаки, спираючись на введене означення відношення подільності та його властивості.

 

Теорема про подільність на 2 і 5: Для того щоб число ділилося на 2 (на 5), необхідно й достатньо, щоб на 2 (на 5) ділилось число його одиниць.

Доведення: Запишемо число а = аnan-1a0 у вигляді суми розрядних одиниць, яку розіб’ємо на два доданки: а = (аn 10 n + … + a1 10) + a0 . Як бачимо, перший доданок ділиться і на 2, і на 5. Отже, щоб сума ділилась на 2 або на 5, необхідно і достатньо, щоб і другий доданок а0 ділився відповідно на 2 або на 5. Теорему доведено.

Наслідок 1: Для того, щоб число а ділилось на 2, необхідно і достатньо, щоб воно закінчувалось однією з цифр 0, 2, 4, 6, 8.

Наслідок 2: Для того, щоб число а ділилось на 5, необхідно і достатньо, щоб воно закінчувалось цифрою 0 або 5.

 

Теорема про подільність на 4 і 25: Для того щоб число ділилось на 4 (на 25), необхідно і достатньо, щоб на 4 (на 25) ділилося число, утворене його двома останніми цифрами.

Доведення: Число а = аnan-1a0 запишемо у вигляді суми двох доданків: а = (an 10 n + … + a2 102) + (a1 10 + a0). Перший доданок ділиться як на 4, так і на 25. Отже, число а як сума двох доданків ділиться на 4 (на 25) тоді і тільки тоді, коли на 4 (на 25) ділиться число а1а0 = а1 10 + а0, утворене двома останніми цифрами числа а. Теорему доведено.

 

Теорема про подільність на 3 і на 9: Для того щоб число а ділилось на 3 або на 9, необхідно і достатньо, щоб на 3 або на 9 ділилась сума цифр цього числа.

Доведення: Запишемо число а у вигляді: а = an 10 n + … + a1 10 + a0.

Оскільки 10 = 9 + 1, 102 = 99 + 1,..., 10 n = +1,

то an (99..9 + 1) + … + a1 (9 + 1) + a0 = (an 99..9 + … + a1 9) + (an + … + a1 + a0).

Перші доданки суми діляться як на 3, так і на 9. Отже, для того щоб число а ділилось на 3 або на 9, необхідно і достатньо, щоб сума одноцифрових чисел, виражених його цифрами (сума цифр) an + … + a1 + a0 , ділилась на 3 або на 9. Теорему доведено.

Доведені вище ознаки подільності дають змогу визначити подільність чисел на 2, 3, 4, 5, 9 і 25. Природно виникає питання, чи існують ознаки подільності на 6, 12, 30 і взагалі на будь-яке складене число.

 

Ознака подільності на 6: Для того, щоб число а ділилося на 6, необхідно й достатньо, щоб воно ділилося на 2 і на 3.

Доведення: Необхідність. Нехай а 6. Тоді оскільки а 6 і 6 2, то а 2. Через те що а 6 і 6 3, то а 3 (за властивістю транзитивності).

Достатність: Якщо а 2 і а 3, то а – спільне кратне чисел 2 і 3, а будь-яке кратне чисел ділиться на їхнє НСК. Отже, а К (2, 3). Оскільки Д(2, 3) = 1, то К (2, 3) = 2∙3 = 6. Таким чином, а 6. Теорему доведено.

 

Теорема про подільність на складені числа: Для того, щоб натуральне число ділилось на складене число n = bc, де НСД (b,c) = 1, необхідно і достатньо, щоб воно ділилося на b і с.

Доведення цієї теореми аналогічне доведенню ознаки подільності на 6.

Зауважимо, що дану теорему можна застосовувати багаторазово.

Так, щоб число ділилося на 60, необхідно і достатньо, щоб воно ділилося на 4 і на 15. У свою чергу, щоб число ділилися на 15, необхідно і достатньо, щоб воно ділилося на 3 і на 5. Отже, для того, щоб число ділилося на 60, необхідно і достатньо, щоб воно ділилося на 4, на 3 і на 5.

 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)