АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Электропроводность биологических тканей. Физические основы реографии. Импеданс биологических тканей.(Губанов: С.217-230)

Читайте также:
  1. I. ОСНОВЫ УПРАВЛЕНИЯ МНОГОКВАРТИРНЫМ ДОМОМ
  2. II. Основы судейского поведения
  3. Teма 5. ОСНОВЫ ОРГАНИЗАЦИИ САНИТАРНО-ЭПИДЕМИО-
  4. V1: Социально-правовые основы природопользования
  5. А) Теоретические основы термической деаэрации
  6. А. Г. Шмелев и коллектив. Основы психодиагностики- Учебное пособие для студентов педвузов. — Москва, Ростов-на-Дону: «Феникс», 1996. — 544 с.
  7. Анатомо-физиологические основы дыхательной системы.
  8. Анатомо-физиологические основы сердечно-сосудистой системы человека.
  9. БИОЛОГИЧЕСКИЕ ОСНОВЫ ОХОТНИЧЬЕГО ПРОМЫСЛА.
  10. БИОЛОГИЧЕСКИХ РЕСУРСОВ
  11. Биотические отношения как основы формирования биоценоза.
  12. Биофизические принципы исследования электрических полей в организме. Понятие о токовом диполе.

Электрические свойства биологических объектов (БО ) изменяются при действии различных физических и химических факторов внешней и внутренней среды организма: температуры, объема, концентрации электролитов, содержания форменных элементов крови, изменения структурных параметров тканей и др. Т.о., электрические свойства БО несут информацию о показателях нормального функционирования и о возможных патологических отклонениях.

Полное сопротивление ткани электрическому току Z имеет две составляющих: омическое сопротивление Ro и емкостное сопротивление Хс и находится по формуле:

модель биообъекта
Z= Ö Ro2 + Хс 2, емкостное Хс сопротивление находится по формуле:

Хс= 1 / wC , где w - циклическая частота и она связана с частотой f, тока проходящего через ткань следующей зависимостью: w = 2Pf

1) Наиболее характерным свойством живых тканей является дисперсия электропроводности, которая присуща только живым тканям.

Дисперсия – это зависимость электрических свойств живых тканей от частоты проходящего тока. Различают три вида дисперсии электропроводности биологических тканейa-,b- и g-. Первой области дисперсии соответствует диапазон частот до 1000 Гц, второй области от 1 кГц до 10 МГц и третьей- свыше 1000 МГц.

Реография основана на выделении из комплексного электрического сопротивления биологических тканей переменной компоненты активной (омической) составляющей сопротивления (импеданса), которая наиболее тесно связана с пульсовыми колебаниями кровенаполнения. Выделение полезного сигнала с графической регистрацией его и лежит в основе реографии. Омическая составляющая выделяется благодаря выбору такой частоту переменного тока (от 30 до 200 кГц ), которая позволяет существенно уменьшить вклад в общее сопротивление емкостной составляющей.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)