АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Взаємозв’язок граничних і змінних витрат

Читайте также:
  1. III. Витрати діяльності
  2. IM4.1. Виявити сумарні витрати й вигоди
  3. V. Сукупні витрати і валовий внутрішній продукт
  4. А)економія за рахунок масштабів, тов..диференціація, вимоги інцест., перехідні витрати, доступ до каналів розподілу, відносні перевитрати незалежно від масштабу
  5. Адаптація операційної системи до зміни її завантаження за критеріям витрат
  6. Альтернативні витрати виробництва велосипеда відносяться до
  7. Аналіз витрат за економічними елементами та статтями.
  8. Аналіз витрат за економічними елементами.
  9. Аналіз витрат за статтями калькуляції.
  10. Аналіз витрат за статтями калькуляції.
  11. Аналіз витрат і ефективності діяльності суб’єктів державного сектору.
  12. Аналіз витрат на 1грн. продукції.

 

 
 
 

 

 


Рис. 6.5. Функція граничних витрат виробництва

 

Взаємозв’язок функцій змінних і граничних витрат: Розіб’ємо координатну вісь абсцис на відрізки з одиничним інтервалом так, що: , причому для всіх . Розглянемо суму наступних різниць: . Після перетворень одержимо, що останній вираз рівносильний наступному: . Тож площа під кривою на вибраному відрізку дорівнюватиме (рис.6.5). Звідси одержимо наступний взаємозв’язок для неперервних функцій: або .

 

Приклад 6.1. . Визначити всі види витрат для даної функції і побудувати їх на графіку..

Розв’язання. , , , , , . Графіки всіх функцій витрат зображені на рис. 6.6 і рис. 6.7.

Рис. 6.6. Функції загальних, постійних і змінних витрат.

 

Рис. 6.7. Функції середніх і граничних витрат.

 

Взаємозв’язок між і Взаємозв’язок між і
- у короткостроковому періоді , , тоді , (, ).   - для дискретних значень випуску.   . , де . Звідси: . Висновок: між граничними витратами і граничною продуктивністю ресурсу існує обернена залежність. , де (, ).   , де .   Звідси: .   Висновок: між середніми змінними витратами і середньою продуктивністю ресурсу також існує обернена залежність.

 


Графічне зображення залежності

Між граничними і середніми продуктивностями і витратами

 

    Рис. 6.8. Функції витрат виробництва і продуктивності ресурсів   Взаємозв’язок функцій середніх і граничних продуктивностей і витрат (рис.6.8):   1. Коли функція граничної продуктивності досягає максимуму, то функція граничних витрат досягає мінімуму. 2. Коли функція середньої продуктивності досягає максимуму, то функція середніх витрат досягає свого мінімуму. 3. . 4. . 5. . 6. . 7. . 8. . Взаємозв’язок ефекту масштабу й середніх витрат

 


Ізокоста

 

 
 
 

 

 


Рис. 6.9. Функція витрат фірми – ізокоста

- функція витрат фірми (обмежений бюджет фірми), де - середня ставка заробітної плати працівника (грн.), - середня рентна ставка за використання одиниці обладнання (грн.), - кількість працівників (людино-годин), - кількість одиниць обладнання (обсяг машино-годин). , . , . за витрати можна придбати або , або . Ізокоста показує всі набори ресурсів, на які фірма витрачає весь свій бюджет (рис.6.9).
  Рис. 6.10. Нахил ізокости , де ● - від’ємний нахил ізокости – з ростом обсягу на одиницю, обсяг скорочується на одиниць. ● , де - кут нахилу ізокости до від’ємного напряму осі (рис.6.10).

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)