|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Исследование сходимости рядовВо многих случаях исследование сходимости рядов сводится к вычислению некоторых пределов и сравнению их значений с некоторыми заданными числами (или символом ∞). Так будет, если для исследования сходимости ряда используются предельный признак сравнения, признак Даламбера, признак Коши (с радикалом) и некоторые другие признаки. Рассмотрим примеры.
ПРИМЕР 2.6. Исследовать сходимость ряда При больших n,
Итак, предел отношения общих членов рассматриваемых рядов конечный и не равный нулю (равен 1). Следовательно, в отношении сходимости оба ряда ведут себя одинаково, т.е. исследуемый ряд сходится. Аналогично можно использовать приложение Mathcad, при иссле-довании сходимости ряда с помощью признака Даламбера ( Заметим, что Windows приложение Mathcad позволяет вычислять не все пределы, а только те, вычисление которых программно обеспечено в этом приложении.
Приложение Mathcad позволяет вычислять значения многих несобственных интегралов. Это можно использовать при исследовании сходимости рядов с помощью интегрального признака Коши.
ПРИМЕР 2.7. Исследовать сходимость ряда Функция
Интеграл имеет конечное значение, следовательно, сходится. Тогда исследуемый ряд тоже сходится.
3. ОБРАЗЦЫ ВЫПОЛНЕНИЯ НЕКОТОРЫХ ЗАДАНИЙ
Рассмотрим решения некоторых, наиболее трудных, практических заданий.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |