|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие высказывания. Виды высказыванийВведение Логика (др.-греч. λογική — раздел философии, «наука о правильном мышлении», «искусство рассуждения» от λόγος — «речь», «рассуждение», «мысль») — наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых с помощью логического языка. Поскольку это знание получено разумом, логика также определяется как наука о формах и законах правильного мышления. Поскольку мышление оформляется в языке в виде рассуждения, частными случаями которого являются доказательство и опровержение, логика иногда определяется как наука о способах рассуждения или наука о способах доказательств и опровержений. Логика как наука изучает способы достижения истины в процессе познания опосредованным путём, не из чувственного опыта, а из знаний, полученных ранее, поэтому её также можно определить как науку о способах получения выводного знания. Одна из главных задач логики — определить, как прийти к выводу из предпосылок (правильное рассуждение) и получить истинное знание о предмете размышления, чтобы глубже разобраться в нюансах изучаемого предмета мысли и его соотношениях с другими аспектами рассматриваемого явления. Законы мира, сущность предметов, общее в них мы познаём посредством абстрактного мышления. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны. Понятие- это форма мышления, которая выделяет существенные признаки предмета или класса предметов, позволяющие отличать их от других. Своим существованием наука «алгебра логики» обязана английскому математику Джорджу Булю, который исследовал логику высказываний. Первый в России курс по алгебре логики был прочитан П. С. Порецким в Казанском государственном университете. Понятие высказывания. Виды высказываний. Основным (неопределяемым) понятием математической логики является понятие «простого высказывания». Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь». Приведем примеры высказываний: 1) Новгород стоит на Волхове. 2) Париж – столица Англии. 3) Карась не рыба. 4) Число 6 делится на 2 и на 3. 5) Если юноша окончил среднюю школу, то он получает аттестат зрелости.
Высказывания 1), 4), 5) истинны, а 2) и 3) – ложны. Очевидно, предложение «Да здравствуют наши спортсмены!» не является высказыванием. Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2). Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если …, то …», «тогда и только тогда», принято называть сложными или составными. Так, высказывание 3) получается из простого высказывания «Карась – рыба» с помощью отрицания «не», высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на 3», соединенных союзом «и». Высказывание 5) получается из простых высказываний «Юноша окончил среднюю школу», «Юноша получает аттестат зрелости» с помощью грамматической связки «если …, то …». Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда». В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным. В дальнейшем будем элементарные высказывания обозначать буквами латинского алфавита: a,b,c,…,x,y,z,…;истинное значение – буквой И или цифрой 1, а ложное значение – буквой Л или цифрой 0. Если высказывание а истинно, то будем писать а=1, если же ложно, то а=0. § 2. Логические операции над высказываниями . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |