|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение
Отметим, что в этом примере неизвестные переменные имеют другое обозначение (не x1, x2, x3, а x, y, z). Перейдем к обыкновенным дробям: Исключим неизвестную x из второго и третьего уравнений системы: В полученной системе во втором уравнении отсутствует неизвестная переменная y, а в третьем уравнении y присутствует, поэтому, переставим местами второе и третье уравнения: На этом прямой ход метода Гаусса закончен (из третьего уравнения не нужно исключать y, так как этой неизвестной переменной уже нет). Приступаем к обратному ходу. Из последнего уравнения находим , из предпоследнего из первого уравнения имеем Ответ: x = 10, y = 5, z = -20.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |