|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных и основная матрица системы невырожденная, методом Гаусса
Как бы мы поступили в школе, если бы получили задание найти решение системы уравнений
Заметим, что прибавив к левой части второго уравнения левую часть первого, а к правой части - правую, можно избавиться от неизвестных переменных x2 и x3 и сразу найти x1:
Подставляем найденное значение x1 = 1 в первое и третье уравнение системы:
Если умножить обе части третьего уравнения системы на - 1 и прибавить их к соответствующим частям первого уравнения, то мы избавимся от неизвестной переменной x3 и сможем найти x2:
Подставляем полученное значение x2 = 2 в третье уравнение и находим оставшуюся неизвестную переменную x3:
Разрешим первое уравнение системы относительно неизвестной переменной x1 и подставим полученное выражение во второе и третье уравнение системы, чтобы исключить из них эту переменную:
Теперь разрешим второе уравнение системы относительно x2 и подставим полученный результат в третье уравнение, чтобы исключить из него неизвестную переменную x2:
Из третьего уравнения системы видно, что x3 = 3. Из второго уравнения находим
Действительно, такая процедура также позволяет исключить неизвестную переменную x1 из второго и третьего уравнений системы:
Например, в СЛАУ
Опишем алгоритм метода Гаусса.
Будем считать, что
где К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго. Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке
Будем считать, что Для этого к третьему уравнению системы прибавим второе, умноженное на
где Далее приступаем к исключению неизвестной x3, при этом действуем аналогично с отмеченной на рисунке частью системы
Так продолжаем прямой ход метода Гаусса пока система не примет вид
С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как
Найдите решение системы уравнений Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.54 сек.) |