|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных и основная матрица системы невырожденная, методом Гаусса
Как бы мы поступили в школе, если бы получили задание найти решение системы уравнений .
Заметим, что прибавив к левой части второго уравнения левую часть первого, а к правой части - правую, можно избавиться от неизвестных переменных x2 и x3 и сразу найти x1: Подставляем найденное значение x1 = 1 в первое и третье уравнение системы: Если умножить обе части третьего уравнения системы на - 1 и прибавить их к соответствующим частям первого уравнения, то мы избавимся от неизвестной переменной x3 и сможем найти x2: Подставляем полученное значение x2 = 2 в третье уравнение и находим оставшуюся неизвестную переменную x3:
Разрешим первое уравнение системы относительно неизвестной переменной x1 и подставим полученное выражение во второе и третье уравнение системы, чтобы исключить из них эту переменную: Теперь разрешим второе уравнение системы относительно x2 и подставим полученный результат в третье уравнение, чтобы исключить из него неизвестную переменную x2: Из третьего уравнения системы видно, что x3 = 3. Из второго уравнения находим , а из первого уравнения получаем .
Действительно, такая процедура также позволяет исключить неизвестную переменную x1 из второго и третьего уравнений системы:
Например, в СЛАУ в первом уравнении отсутствует неизвестная переменная x1 (иными словами, коэффициент перед ней равен нулю). Поэтому мы не можем разрешить первое уравнение системы относительно x1, чтобы исключить эту неизвестную переменную из остальных уравнений. Выходом из этой ситуации является перестановка местами уравнений системы. Так как мы рассматриваем системы линейных уравнений, определители основных матриц которых отличны от нуля, то всегда существует уравнение, в котором присутствует нужная нам переменная, и мы это уравнение можем переставить на нужную нам позицию. Для нашего примера достаточно поменять местами первое и второе уравнения системы , дальше можно разрешить первое уравнение относительно x1 и исключить ее из остальных уравнений системы (хотя во втором уравнении x1 уже отсутствует).
Опишем алгоритм метода Гаусса.
Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид где , а . К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго. Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой, где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего. Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид где , а . Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего. Далее приступаем к исключению неизвестной x3, при этом действуем аналогично с отмеченной на рисунке частью системы Так продолжаем прямой ход метода Гаусса пока система не примет вид С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как , с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.
Найдите решение системы уравнений методом Гаусса. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |