|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение. Первое уравнение системы не содержит неизвестной переменной x1, поэтому, прежде чем начать прямой ход метода Гаусса
Первое уравнение системы не содержит неизвестной переменной x1, поэтому, прежде чем начать прямой ход метода Гаусса, переставим местами первое и второе уравнения: Исключаем x1: Исключаем x2: Исключаем x3: На этом прямой ход метода Гаусса закончен, и вид системы позволяет сразу переходить к обратному ходу. Из последнего уравнения определяем x3 = 0. Из второго уравнения находим , из первого уравнения системы имеем Таким образом, исходная система определена, то есть, имеет единственное решение. Ответ: x1 = 1, x2 = - 2, x3 = 0.
Решите систему уравнений методом Гаусса. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |