АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение. Системы линейных уравнений такого вида мы можем решать методом Гаусса

Читайте также:
  1. Решение.
  2. Решение.
  3. Решение.
  4. Решение.
  5. Решение.
  6. Решение.
  7. Решение.
  8. Решение.
  9. Решение.
  10. Решение.
  11. Решение.

Системы линейных уравнений такого вида мы можем решать методом Гаусса.

Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго:

Исключаем x2 из всех уравнений системы, начиная с третьего:

Третье, четвертое и пятое уравнения полученной системы можно отбросить, при этом получим . В левых частях уравнений оставляем слагаемые, содержащие неизвестные переменные x1 и x2, а остальные слагаемые переносим в правые части соответствующих уравнений:

Принимаем , где - произвольные числа, при этом СЛАУ принимает вид .

Из последнего уравнения системы имеем , а из первого уравнения получаем

Так методом Гаусса мы нашли бесконечное множество решений исходной системы уравнений.

Ответ: , где - произвольные числа.


Пример.

Решите систему линейных уравнений, если она совместна .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)