|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение. Системы линейных уравнений такого вида мы можем решать методом Гаусса
Системы линейных уравнений такого вида мы можем решать методом Гаусса. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго: Исключаем x2 из всех уравнений системы, начиная с третьего: Третье, четвертое и пятое уравнения полученной системы можно отбросить, при этом получим . В левых частях уравнений оставляем слагаемые, содержащие неизвестные переменные x1 и x2, а остальные слагаемые переносим в правые части соответствующих уравнений: Принимаем , где - произвольные числа, при этом СЛАУ принимает вид . Из последнего уравнения системы имеем , а из первого уравнения получаем Так методом Гаусса мы нашли бесконечное множество решений исходной системы уравнений. Ответ: , где - произвольные числа.
Решите систему линейных уравнений, если она совместна . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |