|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
МНОЖЕСТВАЛЕКЦИЯ 1. Предмет дискретной математики, ее структура и содержание. Связь дискретной математики с другими дисциплинами. Дискретные структуры. ЛИТЕРАТУРА:
ДМ - один из крупных разделов древнейшей науки математики. В наше время его максимально приблизили к программированию, и теперь ДМ рассматривается как наука, формирующая теоретические основы программирования. ДМ ЗАКЛАДЫВАЕТ ОСНОВЫ СЛЕДУЮЩИХ РАЗДЕЛОВ: Теория множеств Комбинаторика Теория чисел Теория вероятности Алгебра логики Теория алгоритмов Системы обработки и анализа данных Теория графов и сетей Логика предикатов Поскольку все это разделы математики, то трудно провести границу, где заканчивается один раздел и начинается другой. В связи с этим информация, полученная в курсе ДМ будет применяться и расширяться в последующих дисциплинарных курсах. Мы рассмотрим 4 основных раздела ДМ: Теория множеств Теория отношений и функций Теория графов Основы алгебры логики ДИСКРЕТНАЯ – значит «конечная», «непрерывная», «конкретная» она не рассматривает бесконечность или предел как элемент. Все объекты изучения измеримы. И это неудивительно: человеческое мышление устроено так, что нам требуется конкретика во всем, иначе рассмотреть мир как единое целое не получится. По этому считается, что мир состоит из частиц – элементов мира. И все эти элементы, в свою очередь, тоже состоят из элементов и т.д. (йога - «поза лотоса»). ДМ занимается таким разбиением мира на части - множества с их элементами, имеющими свои элементы и «особенности поведения». Введем обозначения, которыми будем пользоваться: "- квантор всеобщности («для каждого») $ - квантор существования («существует») ! - квантор единственности («единственная») Î -знак принадлежности Ï - знак непринадлежности Ù - конкретный выбор («и») Ú - альтернативный выбор («или») Þ - следственность («если … то …» или «следует») Û - равносильность («…тогда и только тогда, когда…») МНОЖЕСТВА. МНОЖЕСТВО является неопределимым понятием математики как точка, прямая и плоскость. Вы столкнетесь с ним практически во всех науках – математике, физике, химии, истории и т.д. Множество можно описать как совокупность некоторых объектов (элементов множества), объединенных по какому-либо признаку. ПРИМЕР. N={1, 2, 3, …}; Z={… -3, -2, -1, 0, 1, 2, 3, …}; множество геометрических тел; множество геометрических фигур; алфавит; множество парт в аудитории; множество продуктов в магазине и т.д. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |