АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Симбиотическое происхождение митохондрий и жгутиков

Читайте также:
  1. Волокнистая соединительная ткань. Морфо-функциональная характеристика. Классификация. Клеточные элементы: происхождение, строение, функции.
  2. Государство: сущность и происхождение
  3. Духовная жизнь общества:происхождение,сущность функции религии. Место и роль религии а современном обществе.
  4. Понятие права и его происхождение
  5. ПРОИСХОЖДЕНИЕ
  6. Происхождение античной философии. Первые философские школы.
  7. Происхождение и вероучение ислама. Личность Мухаммеда.
  8. Происхождение и значение понятия «религия»
  9. Происхождение и пути формирования права
  10. Происхождение и пути формирования права
  11. Происхождение и строение Земли, ее оболочки, их структура, взаимосвязь, динамика
  12. Происхождение и сущность политики

Способность к фаготрофному питанию предопределила возможность появления у эукариот внутриклеточных симбионтов. Прокариоты этого делать не могли - лишенные способности заглатывать кого бы то ни было, они не приобрели внутриклеточных эндосимбионтов. Для эукариот, наоборот, включение в качестве внутриклеточных симбионтов различных прокариотных и эукариотных организмов весьма характерно. Эукариотная клетка возникла в результате симбиоза первичного амебоидного организма с различными прокариотными и эукариотными существами. Данное положение легло в основу так называемой концепции симбиогенеза, которая стала одной из парадигм современной биологии.

Концепция симбиогенеза была сформулирована еще в начале ХХ в. двумя выдающимися российскими биологами - К.С. Мережковским (родным братом известного писателя Д.С. Мережковского) и Ф.С. Фаминицыным. Однако их идеи в то время не были оценены по достоинству и не получили широкого распространения. К идее симбиогенеза биологи вернулись только в последние десятилетия ХХ в., когда накопилось множество данных по структуре клеток эукариотных организмов. Современные положения симбиогенетической концепции разработаны в трудах американского биолога Лины Маргелис и отечественных исследователей А.Л. Тахтаджана и И.М. Мирабдуллаева.

Согласно нынешним представлениям, симбиотическое происхождение имеют такие важные органеллы эукариотной клетки, как митохондрии. Они обеспечивают синтез главного энергетического ресурса любой клетки - АТФ за счет окислительного фосфорилирования, которое возможно только в присутствии кислорода. Не имеют митохондрий лишь некоторые простейшие, обитающие в анаэробных условиях (например, в кишечнике животных или в лишенных кислорода болотных водах). Несомненно, отсутствие у них митохондрий - вторичный признак, связанный с существованием в бескислородных условиях, это подтверждается тем, что в геноме таких простейших найдены некоторые митохондриальные гены.

Как известно, митохондрии окружены двумя мембранами, причем внутренняя (та, что образует кристы митохондрий) принадлежит самой митохондрии, а наружная - вакуоли, в которой находится симбионт. Митохондрия обладает собственным наследственным материалом, организованным так же, как у прокариотных организмов. Это - лишенная гистонов кольцевая молекула ДНК, несущая информацию о белках, которые синтезируются в самой митохондрии на ее собственных рибосомах прокариотного типа с константой седиментации 70S. Правда, у митохондрий кольцевая молекула ДНК приблизительно в сто раз короче, чем у бактерий, существующих самостоятельно. Дело в том, что многие митохондриальные белки кодируются в ядерной ДНК эукариотной клетки. По-видимому, в процессе длительной совместной эволюции клетки хозяина и симбионта значительная часть генов из генома митохондрий перешла в ядро эукариотной клетки. В геноме митохондрий остались гены только тех белков, которые не могут преодолеть барьер из двух мембран (например, гидрофильные белки). Тем не менее митохондрии не рождаются в клетке заново - они делятся так же, как свободноживущие бактерии.

   

Какие же прокариоты могли быть предками митохондрий? Среди современных прокариот ближе всего к ним пурпурные альфа-протеобактерии (об этом свидетельствуют, в частности, и новые данные молекулярной филогении) - аэробные фотосинтезирующие бактерии, мембрана которых образует глубокие впячивания, похожие на кристы митохондрий. Прародители таких бактерий, вероятно, обитали в кислородных карманах анаэробной биосферы. Вступив в симбиоз с древними амебоидными эукариотами, протеобактерии утратили способность к фотосинтезу, поскольку все необходимые органические вещества они стали получать от хозяина - древнего эукариота, получившего свою выгоду: перестал бояться высоких концентраций кислорода, который утилизировали симбионты.

Первичные аэробные эукариоты, обладающие симбионтами, первоначально тоже заселяли кислородные карманы, но когда через 3 млрд. лет после образования биосферы концентрация кислорода стала нарастать, эукариоты получили возможность широко распространиться в биосфере. В слоях земной коры, относящихся к этому периоду, появляются так называемые акритархи - крупные сферические клетки диаметром 50-60 мкм. Они не могли принадлежать прокариотам, сферические клетки которых не превышают в диаметре нескольких микрон (нитевидные формы могут достигать значительно большей длины). В слоях, возраст которых составляет около 1,7 млрд. лет, найдены стеролы - вещества, синтезируемые в ядре эукариотных организмов. Таким образом, в период от 1 до 2 млрд. лет назад началась адаптивная эволюция эукариот.

Жгутики и реснички эукариотных клеток тоже считаются "потомками" симбиотических прокариот. Многие бактерии (например, вибрионы) имеют жгутики (так называемые "флагеллы") - особые образования, содержащие белок флагеллин. Но ни по строению, ни по химическому составу они не имеют ничего общего со жгутиками и ресничками эукариот. Зато у последних они устроены абсолютно идентично. Жгутики паразитического простейшего - трипаносомы, реснички инфузории-туфельки, сперматозоиды папоротника, реснички трахеи человека устроены одинаково. Внутри жгутика или реснички проходят правильно расположенные микротрубочки, состоящие из особого белка - тубулина (который никогда не встречается у прокариот). Располагаются они следующим образом: в центре проходят две одиночные микротрубочки, а по периферии - 9 дублетов. Микротрубочки жгутика присоединяются к базальному тельцу - кинетосоме, которая состоит из 9 триплетов микротрубочек. Даже если жгутики исчезают, кинетосомы остаются и функционируют в качестве центриолей. Например, все клетки (в том числе и безжгутиковые) многоклеточных животных обладают двумя рядом расположенными центриолями. Именно они организуют веретено деления, благодаря которому достигается правильное распределение хромосом в митозе и мейозе.

Жгутики не отделены от цитоплазмы мембранами, никаких препятствий для перехода белков из цитоплазмы в жгутик нет, поэтому большинство белков жгутика кодируются в ядре клетки. В то же время внутри базального тельца жгутика есть маленькая кольцевая молекула ДНК, которая содержит несколько генов, контролирующих формирование базального тельца. Дело в том, что центриоли (базальные тельца) не возникают в клетке на пустом месте. Перед делением две центриоли расходятся и рядом с каждой из них формируется новая. Таким образом, для синтеза очередного органоида необходима "затравка" в виде старого.

Предполагается, что предками жгутика были бактерии, напоминающие современных спирохет, подвижных бактерий, чьи узкие спирально закрученные клетки быстро движутся, как бы ввинчиваясь в пространство. Правда, сами они никак не могли быть предками жгутиков: в них нет микротрубочек, а тонкое строение совершенно иное. Но это вовсе не означает, что в далеком прошлом не было других спирохетоподобных организмов, которые и стали предком эукариотного жгутика. По-видимому, его прародители сначала были экзосимбионтами, то есть прикреплялись к цитоплазматической мембране примитивного эукариота снаружи. Симбионт использовал для своего питания выделяемые хозяином метаболиты, а взамен благодаря своей локомоторной активности способствовал его быстрому (по сравнению с формированием псевдоподий) перемещению. Именно такое взаимодействие сформировалось между спирохетами и некоторыми крупными простейшими. Симбиотические спирохеты сидят на поверхности жгутиконосца Myxotricha paradoxa (который имеет и обычные жгутики), их движения согласованны, как у настоящих ресничек, а локомоторная активность обеспечивает плавное и постепенное движение жгутиконосца, тогда как собственные жгутики позволяют ему совершать лишь быстрые движения вперед по спирали. Любопытно, что для большего удобства прикрепления спирохет клетка хозяина любезно образует специальные уплотненные "подставки", от которых внутрь цитоплазмы хозяина идут пучки фибрилл, напоминающие корешки настоящих жгутиков и ресничек. Этот пример показывает, что симбиоз между подвижными бактериями и эукариотами может возникать неоднократно.

Происхождение эукариотных растений

Первичные эукариоты были одноклеточными животными. Они питались, захватывая и переваривая другие микроскопические организмы. Одним из магистральных направлений их эволюции стало приобретение фотосинтезирующих симбионтов, которые превратились в органеллы, обеспечивавшие синтез органических веществ из углекислого газа и воды за счет энергии солнечного света. Этот путь привел к появлению различных групп эукариотных растений, то есть автотрофных фотосинтезирующих организмов. Они не родственны друг другу и возникли в результате симбиоза хищных протистов (простейших или их колоний) с различными фотосинтезирующими организмами.

В нескольких случаях симбионтами хищных эукариот стали цианобактерии - сине-зеленые водоросли, самая распространенная (по крайней мере в современной биосфере) и, возможно, самая древняя группа фотосинтезирующих прокариот. Их несомненными потомками являются фотосинтезирующие органеллы (хлоропласты) красных водорослей. Они окружены только двумя мембранами, имеют собственную кольцевую ДНК и рибосомы прокариотного типа и содержат типичные для цианобактерий хлорофилл "а" и специфические пигменты цианобактерий - фикобилины. Красные водоросли в настоящее время широко распространены в морях нашей планеты. Они способны существовать на глубинах в несколько сот метров, но живут и в приливно-отливной полосе, а некоторые виды обитают и в пресных водах. Возможно, красные водоросли - самая древняя группа эукариотных растений. Об этом говорит полное отсутствие в их жизненном цикле жгутиковых стадий (даже их сперматозоиды - безжгутиковые), что позволяет предположить, что предки этих водорослей отделились от остальных эукариот еще до приобретения жгутиков.

Впрочем, красные водоросли - не единственная группа, использующая потомков цианобактерий в качестве симбионтов. У одноклеточных жгутиконосцев - глаукофитов (совсем не родственных красным водорослям) фотосинтезирующие органеллы так и называются - цианеллы. Они даже сохраняют характерную для цианобактерий муреиновую оболочку (т.е. механически прочный элемент клеточной стенки). Тем не менее цианеллы - настоящие симбионты, которые не могут жить отдельно от хозяина. Даже их геном - кольцевая ДНК - приблизительно в 10 раз короче, чем у свободноживущих цианобактерий. Это означает, что и в данном случае значительная часть белков цианелл кодируется в ядерном геноме хозяина.

Хлоропласты зеленых ворослей (хлореллы, хламидомонады, вольвокса и др.) - тоже потомки фотосинтезирующих прокариот. Они окружены двумя мембранами, содержат кольцевую ДНК и собственные рибосомы прокариотного типа. Однако набор хлорофиллов у них совсем другой - это хлорофиллы "a" и "b", а фикобилинов нет. Значит, предками хлоропластов зеленых водорослей не могли быть цианобактерии. Долгое время свободноживущие бактерии с хлорофиллами "a" и "b" не были известны. Лишь в последние два десятилетия были обнаружены представители особой группы прохлорофитов - Prochloron и Prochlorotrix - с таким же набором хлорофиллов. Прохлорон представляет собой крупную шарообразную бактерию, живущую в тунике колониальных асцидий, а прохлоротрикс - нитчатая пресноводная форма. В настоящее время прохлорофиты - реликтовая группа, насчитывающая всего несколько видов, но в далеком прошлом они, вероятно, играли в биосфере значительную роль. Вполне возможно, что древние прохлорофиты участвовали (наряду с цианобактериями) в построении строматолитов. Тогда же они вступили в симбиоз с предками зеленых водорослей. Значение этого союза тем более велико, что потомки зеленых водорослей - высшие растения - унаследовали хлоропласты с двумя мембранами и хлорофиллами "a" и "b". Таким образом, в зеленой иголочке сосны или блестящем листе фикуса сохранились потомки древних прохлорофитов, превратившихся в хлоропласты.

Мир эукариотных растений отнюдь не ограничивается красными и зелеными водорослями. В современной биосфере процветают различные группы организмов с золотисто-бурыми хлоропластами. Одноклеточные и колониальные диатомовые водоросли, клетки которых защищены кремнеземным панцирем, господствуют в Мировом океане, населяют пресные воды и влажную почву. Прибрежная зона моря заселена бурыми водорослями - фукусами, ламинариями и саргассами (последние могут выживать и в открытом океане - вспомните Саргассово море). Среди бурых водорослей встречаются настоящие гиганты. Например, у тихоокеанского побережья Южной Америки обитает самый крупный растительный организм планеты - макроцистис, достигающий 150 м в длину. В планктоне морских и пресных вод распространены фотосинтезирующие жгутиконосцы - золотистые водоросли и криптомонады.

Хлоропласты золотистых, диатомовых и бурых водорослей содержат хлорофиллы "а" и "с" и почему-то окружены 4 мембранами. Их происхождение помогло понять строение криптомонад - небольшой группы жгутиконосцев, хлоропласты которых тоже имеют хлорофиллы "а" и "с", окружены 4 мембранами, причем между второй и третьей имеется маленькое эукариотное ядро - нуклеоморф, а внутри пространства, ограниченного последней, четвертой мембраной находится кольцевая ДНК. Такое строение позволяет предполагать, что хлоропласты криптомонад возникли в результате двойного симбиоза. Сначала некий хищный протист приобрел в качестве симбионта золотистую бактерию с хлорофиллами "а" и "с", а потом сам стал симбионтом криптомонады. В хлоропластах бурых, диатомовых и золотистых водорослей нуклеоморфа уже нет, хотя они по-прежнему окружены 4 мебранами, что говорит о более глубокой интеграции симбионта и хозяина.

Хлоропласты приобретены различными группами эукариотных растений независимо друг от друга, и предками хлоропластов были разные свободноживущие организмы: в одних случаях ими были бактерии (зеленые или сине-зеленые), а в других - эукариотные простейшие.


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)