|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
П. 2 Свойства БМП
Вспомним определение БМП: если для любого положительного e (эпсилон) найдется номер, зависящий от e, такой, что, как только n>N выполняется неравенство
(*) Теорема 1. Сумма двух БМП есть БМП. Доказательство:
Пусть ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Рассмотрим последовательность
Следствие. Сумма любого конечного числа БМП есть БМП. (Доказать самостоятельно).
Теорема 2. БМП ограничена.
Доказательство: Пусть сти
Теорема 3. Если Доказательство: Так как Следствие 1. Произведение двух БМП есть БМП. (Доказать самостоятельно). Следствие 2. Произведение любого конечного БМП есть БМП. (Доказать самостоятельно).
Теорема 4. Для того, чтобы последовательность Доказательство:
Необходимость. Пусть Достаточность доказать самостоятельно.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |