Многослойная плоская стенка
Рассмотрим для тех же условий многослойную плоскую стенку с толщиной слоев d1, d2,…, dn с соответствующими коэффициентами теплопроводности l1, l2,…, ln (рис. 29). Здесь слои плотно прилегают друг к другу.
В этом случае плотность теплового потока определяется по формуле:
Рис. 29. Распределение температур по толщине многослойной плоской стенки
| | ,
где n - число слоев многослойной стенки;
tc1 и tc(n+1) - температуры на внешних границах многослойной стенки;
- полное термическое сопротивление многослойной плоской стенки.
Плотность теплового потока, проходящего через все слои, в стационарном режиме одинакова. А так как коэффициент теплопроводности l различен, то для плоской многослойной стенки распределение температур - ломанная линия.
Рассчитав тепловой поток через многослойную стенку, можно найти температуру на границе любого слоя. Для к-го слоя можно записать:
, 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | Поиск по сайту:
|