|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Однородная стенка. Рассмотрим однороднуюцилиндрическую стенку (трубу) длиной l м, с внутренним радиусом r1 и внешним r2
Рассмотрим однороднуюцилиндрическую стенку (трубу) длиной l м, с внутренним радиусом r1 и внешним r2. Коэффициент теплопроводности материала постоянен и равен λ. Внутренняя и внешняя поверхности поддерживаются при постоянных температурах t1 и t2, причем t1 > t2, (рис.10). Температура изменяется только в радиальном направлении х.
Следовательно, температурное поле здесь будет одномерным, а изотермические поверхности цилиндрическими поверхностями, имеющими с трубой общую ось. Выделим внутри стенки кольцевой слой с радиусом r и толщиной dr, ограниченный изотермическими поверхностями. Согласно закону Фурье тепловой поток, проходящий через этот слой в сек, равен (Вт) (25а) Разделив переменные, получим (25в) Интегрирование последнего уравнения дает: (25с) Подставляя значение переменных на границах стенки, а именно при r = r 1 и t = t 1 при r = r 2 и t = t 2, получаем следующие два равенства: (25д) (25е) Вычитая из первого равенства (д) второе (е), находим:
откуда определяется неизвестная величина q: (26) Следовательно, тепловой поток через стенку трубы, пря- мо пропорционально коэффициенту теплопроводности λ, длине l и температурному напору Δ t = (t 1 - t 2) и обратно пропорционально натуральному логарифму отношения внешнего радиуса трубы r 2 к внутреннему r 1. Вместо отношения радиусов можно брать отношение диаметров. Уравнение (26) является расчетной формулой теплопроводности цилиндрической стенки. Оно остается справедливым для случая, когда t 1 < t 2, т.е. когда тепловой поток направлен от наружной поверхности к внутренней. Если в уравнение (с) подставить значение постоянной С уравнения (д), а значение Q из уравнения (26), то получим уравнение температурной кривой: , оС (27) Оно представляет собой уравнение логарифмической кривой. Следовательно, внутри однородной цилиндрической стенки постоянном значении коэффициента теплопроводности температура изменяется по логарифмической кривой (рис.10). Дополнительные сведения. Если учесть зависимость коэффициента теплопроводности от температуры λ = λ0(1+ bt), то уравнение температурной кривой для цилиндрической стенки будет иметь следующий вид: (28) Количество тепла, проходящее в час через стенку трубы, может быть отнесено либо к 1 пог. м длины трубопровода, либо к единице внутренней, либо к единице внешней поверхности трубы. При этом расчетные формулы соответственно принимают следующий вид: , Вт/м (29) , Вт/м2 (30) , Вт/м2 (31) Так как внутренняя и внешняя поверхности трубы по величине различны, то различными получаются и значения удельных тепловых потоков q1 и q2. Из формул (1.17), (1.18) и (1.19) легко получить соотношение, связывающее между собой величины q 1 и q 2 и q l, а именно: q ·l= π d 1· q 1 = π d 2· q 2
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |