|
|||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
РАЗДЕЛ 3. Лучистый теплообменОбщие положения Тепловое излучение представляет собой процесс распространения внутренней энергии излучающего тела путем электромагнитных волн. Электромагнитными волнами называют электромагнитные возмущения, исходящие от излучающего тела и распространяющиеся в вакууме со скоростью света, равной 3.108 м/с. При поглощении электромагнитных волн какими-либо другими телами они вновь превращаются в тепловую энергию. Возбудителями электромагнитных волн являются заряженные материальные частицы, т.е. электроны и ионы, входящие в состав вещества. При этом колебание ионов соответствует излучению низкой частоты; излучение, обусловленное движением электронов, может иметь высокую частоту, если они входят в состав атомов и молекул и удерживаются около своего центра равновесия значительными силами. В металлах многие электроны являются свободными, и поэтому нельзя говорить о колебаниях около центров равновесия. Электроны движутся и при этом испытывают нерегулярное торможение. Вследствие этого излучение металлов приобретает характер импульсов и имеет волны различной частоты, в том числе и волны низкой частоты. Помимо волновых свойств, излучение обладает также и корпускулярными свойствами. Корпускулярные свойства состоят в том, что лучистая энергия испускается и поглощается материальными телами не непрерывно, а отдельными дискретными порциями – квантами света или же фотонами. Испускаемый фотон – частица материи, обладающая энергией, количеством движения и электромагнитной массой. Поэтому тепловое излучение можно рассматривать как фотонный газ. Прохождение фотонов через вещество есть процесс поглощения и последующего испускания энергии фотонов атомами и молекулами вещества. Таким образом, излучение имеет двойственный характер, поскольку оно обладает свойствами непрерывности полей электромагнитных волн и свойствами дискретности, типичными для фотонов. синтезом обоих свойств является представление, согласно которому энергия и импульсы сосредотачиваются в фотонах, а вероятность нахождения их в том или ином месте пространства в волнах, Классификация излучения в зависимости от длины волны приведены в табл. 5. Таблица 5 – Классификация электромагнитного излучения в зависимости от длин волн
Некоторые виды излучения обладают свойствами превращаться в тепловую энергию. Поглощение телами энергии вызывает нагревание. Это свойство излучения определяется длиной волны в зависимости от температуры тела. В наибольшей мере такими свойствами обладает инфракрасное излучение с длиной волны от 0,4 до 40 мк. Видимый диапазон излучения - 0,4¸0,8 мк. Это излучение называется тепловым, а процесс распространения его энергии между телами в пространстве – тепловым излучением или лучистым теплообменом. Квантовые или корпускулярные свойства проявляются наиболее существенно в коротковолновом излучении. Характерные волновые свойства наиболее отчетливо наблюдаются у радиоволн. Большинство твердых и жидких тел имеют сплошной спектр излучения. Чистые металлы и газы характеризуются выборочным или селективным излучением. Подавляющее большинство встречающихся в природе и технике твердых и жидких тел имеют значительную поглощательную и излучательную способность. Вследствие этого в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои. Для проводников тепла толщина этих слоем имеет порядок 1 мк, а для непроводников тепла – порядок 1 мм. Поэтому, применительно к твердым телам, а также жидкостям, тепловое излучение в ряде случаев приближенно можно рассматривать как поверхностное явление. Газообразные тела имеют значительно меньшее излучение, чем твердые и жидкие тела. Поэтому в излучении газов участвуют все его частицы, и процесс теплового излучения носит объемный характер. Излучение всех тел зависит от температуры. С увеличение температуры излучение увеличивается, так как увеличивается внутренняя энергия тела. Кроме того, изменение температуры сопровождается изменением спектрального состава излучения. При увеличении температуры растет интенсивность коротковолнового излучения, а интенсивность длинноволнового излучения уменьшается.
Основные понятия Излучение, относящееся к узкому интервалу длин волн от l до l +D l, называется потоком монохроматического, спектрального или однородного излучения (Ql). Суммарное излучение с поверхности тела по всем направлениям полусферического пространства и по всем длинам волн спектра называется интегральным или полным лучистым потоком (Q). Интегральный лучистый поток, испускаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется интегральной плотностью полусферического излучения или излучательной способностью тела , Вт/м2, (106) где dQ – лучистый поток, Вт, (Дж/с), испускаемый с элемента поверхности dF, м2. Если речь идет о собственном излучении тела, т.е. Q = Qсобс., то валичина Е = Есобс. называется лучеиспускательной способностью тела. Лучистый поток по всей поверхности можно выразить как , Вт. (107) Здесь F –полная поверхность тела, м2. Если плотность интегрального полусферического излучения для всех точек поверхности излучающего тела постоянна, то зависимость (107) переходит в соотношение , Вт. (108) Отношение плотности лучистого потока, испускаемого в бесконечном малом интервале длин волн к величине этого интервала длин волн, носит название спектральной интенсивности излучения: , Вт/м3. (109) В этом случае имеет место излучение энергии одного цвета с единицы поверхности по всем направлениям полусферического пространства. Интенсивность излучения изменяется с длиной волны. Кроме того, оно может изменяться по отдельным направлениям излучения. Излучение, которое определяется природой данного тела и его температурой, называется собственным излучением (Q, Е). Обычно тело участвует в теплообмене с другими телами. Энергия излучения других тел, попадая на данное тело, частично им поглощается, частично отражается, а часть ее проходит сквозь тело. Обозначим Qо общее количество лучистой энергии, падающей на тело в единицу времени, через QА, QR, QD - соответственно количество лучистой энергии поглощенной, отраженной и пропущенной сквозь тело. Тогда можно написать уравнение баланса лучистой энергии: Qо = QА + QR + QD (рис. 27).
Если разделим равенство на падающий поток, то получим: (110) или
где - поглощательная способность тела; - отражательная способность тела; - пропускательная способность тела. Тело, полностью поглощающее падающую на него лучистую энергию, называется абсолютно черным (А = 1; R = D = 0). Тело, полностью отражающее падающую на него лучистую энергию, называется зеркальным или абсолютно белым (R = 1; А = D = 0). Тело, полностью пропускающее падающую на него лучистую энергию, называется абсолютно прозрачным или диатермичным (D = 1; R = А = 0). Реальные тела в природе нельзя отнести ни к одной из указанных категорий, т.к. для реальных тел А < 1, R < 1, D < 1 и они носят название серых тел. Существуют тела, которые по своим свойствам близко подходят к свойствам абсолютно черных, абсолютно белых и абсолютно прозрачных тел. Близко подходит к свойствам абсолютно черного тела сажа, бархат, иней (А = 0,97). Снег по отношению к тепловому излучению не слишком нагретых тел является почти абсолютно черным телом (А = 0,985). близкими по свойствам к абсолютно белым телам – полированные металлы (R = 0,95÷0,97). Близкими к свойствам диатермичного тела относятся одноатомные и двухатомные газы (D ≈ 1). Имеется много тел, которые прозрачны для лучей определенной длины волны, но непрозрачны для лучей другой длины волны. Например, оконное стекло прозрачно для световых лучей, а для ультрафиолетовых и тепловых лучей оно почти не прозрачно. Белая поверхность хорошо отражает только видимые (солнечные) лучи, что и дает восприятие белого цвета. Невидимые тепловые лучи белой поверхностью поглощаются интенсивно. Если между данным телом и окружающими телами происходит лучистый теплообмен, то поверхность тела испускает не только собственное излучение, но и часть падающего излучения. Результирующее излучение qw представляет собой разность между лучистым потоком, получаемым данным телом Епад, и эффективным лучистым потоком Еэф, который она посылает в окружающее пространство (рис. 28)/ . (111) Сумма собственного излучения и отраженного лучистого потока называется эффективным излучением Еэф = Есобс – Еотр = Есобс – r . Епад.
Величину qw можно получить и из другого соотношения: (112) Для расчетов лучистого теплообмена необходимо найти связь между тремя видами лучистых потоков на поверхность тела: эффективным, результирующим и собственным излучениями. Эта связь легко устанавливается на основе приведенных выше определений лучистых потоков. Из формулы (111) получаем , (а) из формулы (112) следует . (б) Подставляя выражение (б) в (а) находим связь Еэф, qw и Есобс . (113) Результирующий тепловой поток может быть положительным, отрицательным и равным нулю.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |