Касательная плоскость к поверхности
Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.
Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x0, y0, z0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями
x = φ(t); y = ψ(t); z = χ(t).
Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:
Уравнения касательной к кривой L в точке M имеют вид:
Т. к. разности x - x0, y - y0, z - z0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:
F'x(x - x0) + F'y(y - y0) + F'z(z - z0)=0
и для частного случая z = f(x, y):
Z - z0 = F'x(x - x0) + F'y(y - y0)
Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида
Решение:
Z'x = x / a = 2; Z'y = -y / a = -1
Уравнение искомой плоскости:
Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a
1 | 2 | 3 | 4 | 5 | 6 | 7 | Поиск по сайту:
|