АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тепловые сети

Читайте также:
  1. Круговые процессы. Тепловые двигатели
  2. Общая характеристика нагревательных печей металлургических переделов. Конструкция, тепловые режимы работы. Использование защитных атмосфер. Тепловой баланс нагревательных печей.
  3. Тепловые балансы и изменение температуры воздуха в закрытом (рабочем или жилом) помещении при установившемся тепловом состоянии.
  4. Тепловые балансы и изменение температуры при не установившемся состоянии.
  5. Тепловые балансы печей.
  6. Тепловые и ионизационные извещатели
  7. Тепловые методы воздействия на пласт.
  8. Тепловые методы дефектоскопии.
  9. ТЕПЛОВЫЕ НАСОСЫ.
  10. Тепловые трубы
  11. Тепловые шумы приемника

Тепловая сеть– это совокупность трубопроводов и устройств, обеспе-

чивающих по­средством теплоносителя (горячей воды или пара) транспортировку теплоты от источника теплоснабжения к потребителям.

Конструкционно тепловая сеть включает трубопроводы с теплоизоляцией и компенсаторами, устройства для укладки и закрепления трубопроводов, а так же запорную или регулирующую арматуру.

Выбор теплоносителя определяется анализом его положительных и отрицательных свойств. Основные преимущества водяной системы теплоснабжения: высокая аккумулирующая способность воды; возможность транспортировки на большие расстояния; по сравнению с паром меньшие потери тепла при транспортировке; возможность регулирования тепловой нагрузки путем изменения температуры или гидравлического режима. Основной недостаток водяных систем – это большой расход энергии на перемещение теплоносителя в системе. Кроме того, использование воды в качестве теплоносителя, возникает необходимость в специальной ее подготовке. При подготовке в ней нормируются показатели карбонатной жесткости, содержание кислорода, содержание железа и pH. Водяные тепловые сети обычно применяются для удовлетворения отопительно – вентиляционной нагрузки, нагрузки горячего водоснабжения и технологической нагрузки малого потенциала (температура ниже 100 0С).

Преимущества пара как теплоносителя следующие: малые потери энергии при движении в каналах; интенсивная теплоотдача при конденсации в тепловых приборах; в высокопотенциальных технологических нагрузках пар можно использовать с высокими температурой и давлением. Недостаток: эксплуатация паровых систем теплоснабжения требует соблюдения особых мер безопасности.

Схема тепловой сети определяется следующими факторами: размеще­нием источника теплоснабжения по отношению к району теплового потреб­ления, характером тепловой нагрузки потребителей, видом теплоносителя и принципом его использования.

Тепловые сети подразделяются на:

магистральные,прокладываемые по главным направлениям объектов теплопотребления;

распределительные,которые расположены между магистральными тепловыми сетями и узлами ответвления;

ответвления тепловых сетей к отдельным потребителям (зданиям).

Схемы тепловых сетей применяют, как правило, лучевые, рис. 5.1. От ТЭЦ или котельной 4 по лучевым магистралям 1 теплоноситель поступает к потребителю теплоты 2. С целью резервного обеспечения теплотой потре бителей лучевые магистрали соединяются перемычками 3.

Радиус действия водяных сетей теплоснабжения достигает

12 км. При небольших протяженностях магистралей, что характерно для сельских тепловых сетей, применяют радиальную схему с постоянным уменьшением диаметра труб по мере удаления от источника теплоснабжения.

Укладка тепловых сетей может быть надземной (воздушной) и подземной.

Надземная укладка труб (на

отдельно стоящих мачтах или эстакадах, на бетонных блоках и применяется на территориях предприятий, при сооружении тепловых сетей вне черты города при пересечении оврагов и т.д.

В сельских населенных пунктах наземная прокладка может быть на низких опорах и опорах средней высоты. Этот способ при- меним при температуре тепло-

носителя не более 1150С. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладку. На рис. 5.2 изображена канальная прокладка. При канальной прокладке, изоляционная конст­рукция трубопроводов разгружена от внешних нагрузок засыпки. При беска­нальной прокладке (см. рис. 5.3) трубопроводы 2 укладывают на опоры 3 (гравийные

или песчаные подушки, деревян- ные бруски и другое).

Засыпка 1, в качестве которой используют: гравий, крупнозернистый песок, фрезерный торф, керамзит и т.п., служит защитой от внешних повреждений и одновременно снижает теплопотери. При канальной прокладке температура теплоносителя может достигать 180 °С. Для тепловых сетей, чаще всего используют стальные трубы диаметром от 25 до 400 мм. С целью предотвращения разрушения металлических труб вследствие температурной деформации по длине всего трубопровода через определенные расстояния устанавливаются к о м п е н с а т о р ы.


Различные конструктивные выполнения компенсаторов приведены на рис. 5.4.

Рис. 5.4. Компенсаторы:

а – П-образный; б – лирообразный; в – сальниковый; г – линзовый

Компенсаторы вида а (П-образный) и б (лирообразный) называют радиальными. В них изменение длины трубы компенсируется деформацией материала в изгибах. В сальниковых компенсаторах в возможно скольжение трубы в трубе. Втаких компенсаторах возникает потребность в надежной конструкции уплотнения. Компенсатор г – линзового типа выбирает изменение длины за счет пружинящего действия линз. Большие перспективы у с и л ь ф о н н ы х компенсаторов. Сильфон – тонкостенная гофрированная оболочка, позволяющая воспринимать различные перемещения в осевом, поперечном и угловом направлениях, снижать уровень вибраций и компенсировать несоосность.

Трубы укладываются на специальные опора двух типов: свободные и неподвижные. Свободные опоры обеспечивают перемещение труб при температурных деформациях. Неподвижные опоры фиксируют положение труб на определенных участках. Расстояние между неподвижными опорами зависит от диаметра трубы, так, например, при D = 100 мм L= 65 м; при D = 200 мм L = 95 м. Между неподвижных опор под трубы с компенсаторами устанавливают 2…3 подвижных опоры.

В настоящее время вместо металлических труб, требующих серьезной защиты от коррозии, начали широко внедряться пластиковые трубы. Промышленность многих стран выпускает большой ассортимент труб из поли-мерных материалов (полипропилена, полиолефена); труб металлопластиковых; труб, изготовленных намоткой нити из графита, базальта, стекла.

На магистральных и распределительных тепловых сетях укладывают трубы с теплоизоляцией, нанесенной индустриальным способом. Для теплоизоляции пластиковых труб предпочтительнее использовать полимеризующиеся материалы: пенополиуретан, пенополистерол и др. Для металлических труб используют битумоперлитовую или фенольнопоропластовую изоляцию.

5.2. Тепловые пункты

Тепловой пункт – это комплекс устройств, расположенных в обособленном помещении, состоящих из теплообменных аппаратов и элементов теплотехнического оборудования.

Тепловые пункты обеспечивают присоединения теплопотребляющих объектов к тепловой сети. Основной задачей ТП является:

– трансформация тепловой энергии;

– распределение теплоносителя по системам теплопотребления;

– контроль и регулирование параметров теплоносителя;

– учета расходов теплоносителей и теплоты;

– отключение систем теплопотребления;

– защита систем теплопотребления от аварийного повышения параметров теплоносителя.

Тепловые пункты подразделяются по наличию тепловых сетей после них на: центральные тепловые пункты (ЦТП) и индивидуальные тепловые пункты (ИТП). К ЦТП присоединяются два и более объекта теплопотребления. ИТП подсоединяет тепловую сеть к одному объекту или его части. По размещению тепловые пункты могут быть отдельно стоящие, пристроенные к зданиям и сооружениям и встроенные в здания и сооружения.

На рис. 5.5 приведена типичная схема систем ИТП, обеспечивающего отопление и горячее водоснабжение отдельного объекта.

Из тепловой сети к запорным кранам теплового пункта подведены две трубы: п о д а ю щ а я (поступает высокотемпературный теплоноситель) и

о б р а т н а я (отводится охлажденный теплоноситель). Параметры теплоносителя в подающем трубопроводе: для воды (давление до 2,5 МПа, температура – не выше 200 0 С), для пара (р t 0 C). Внутри теплового пункта установлены как минимум два теплообменных аппарата рекуперативного типа (кожухотрубные или пластинчатые). Один обеспечивает трансформацию теплоты в систему отопления объекта, другой – в систему горячего водоснабжения. Как в ту, так и в другую системы перед теплообменниками вмонтированы приборы контроля и регулирования параметров и подачи теплоносителя, что позволяет вести автоматический учет потребляемой теплоты. Для системы отопления вода в теплообменнике нагревается максимум до 95 0С и циркуляционным насосом прокачивается через нагревательные приборы. Циркуляционные насосы (один рабочий, другой резервный) устанавливаются на обратном трубопроводе. Для горячего водоснаб-


жения вода, прокачиваемая через теплообменник циркуляционным насосом, нагревается до 60 0С и подается потребителю. Расход воды компенсируется в теплообменник из системы холодного водоснабжения. Для учета теплоты, затраченной на нагрев воды, и ее расхода устанавливаются соответствующие датчики и регистрирующие приборы.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)