|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Тепловые трубыК новым типам теплопередающих устройств необходимо отнести так называемые тепловые трубы. Устройство и принцип действия тепловой трубы рассмотрим на примере одной из ее разновидностей, представленной на рис. 9.11. Тепловая труба имеет герметичный корпус 1, на внутренней поверхности которого расположен капиллярно-пористый материал – фитиль 2, пропитанный жидким теплоносителем. Корпус обычно выполняют из круглой трубы (но имеются и плоские тепловые трубы). Тепловой поток подводят к участку корпуса на одном из концов тепловой трубы. Внутри трубы на этом участке теплоноситель, пропитывающий фитиль, испаряется, и его пары 3 движутся по центральной части трубы к охлаждаемому участку, где они конденсируются. Рис. 9.11 Жидкая фаза по фитилю под действием капиллярных сил возвращается в зону испарения. Чрезвычайно теплоемкие процессы парообразования и конденсации обеспечивают очень высокую плотность тепловых потоков, достигающих нескольких кВт/см2, в диапазоне температур от -200 до +2500 оС. Тепловые трубы способны передавать в сотни раз больше теплоты на единицу массы, чем такие металлы, как медь и серебро (теплопроводность тепловой трубы в 1000 раз больше, чем меди). Классифицируют тепловые трубы по следующим признакам. 1) По температурному диапазону: – криогенные – (Т < 200 К); – низкотемпературные – (Т = 200...550 К); – среднего диапазона – (Т = 550...750) К; – высокотемпературные – (Т > 750) К. 2) По виду теплоносителей: – металлические (калий, натрий, серебро и др.); – неметаллические (вода, аммиак, фреоны, криогенные жидкости, высоко- температурные органические теплоносители и др.). 3) По форме оболочек и фитилей: – цилиндрические, – плоские, – коаксиальные, – кольцевые. 4) По роду материала оболочек и фитилей: – алюминиевые трубы с сетчатым фитилем из нержавеющей стали или алюминиевой металлокерамики; – медные трубы с фитилем из медной сетки, войлока, керамики. Факторами, характеризующими работу тепловой трубы и определяющими ее эффективность, являются: 1) Перенос теплоносителя в капиллярнопористом фитиле, т.е. работа капиллярного насоса; 2) Теплосъем путем испарения теплоносителя из капиллярнопористого тела; 3) Гидродинамика процесса переноса массы в паровой фазе от испарителя к конденсатору; 4) Теплоотдача при конденсации пара на пористую поверхность и отвод тепла теплопроводностью через фитиль и стенку трубки. Любой из вышеуказанных факторов может оказаться лимитирующим, однако наиболее узким местом в успешном использовании тепловых трубок являются первые два фактора. Получить аналитические зависимости для вычисления передаваемой тепловой трубой плотности теплового потока весьма сложно, так как необходимо учитывать динамику потока жидкости и пара, кинетику фазовых переходов на поверхности раздела жидкость – пар, перенос энергии в капиллярно-пористых телах. По этой причине в настоящее время применяются различные полуэмпирические зависимости, [8]. Наиболее широкие возможности применения тепловых труб в системах теплопередачи Например, в двигателях стирлинга для регенерации теплоты; для охлаждения масла в картерах ДВС и парообразования бензина; для охлаждения сжатых газов в компрессорных станциях; в различного рода бытовых теплообменниках и д.р.
Библиографический список
1. Алексеев Г.Н. Общая теплотехника. Г. Н. Алексеев. – М.: Высш. шк., 1980. – 552 с.: ил. 2.Амерханов Р.А. Теплоэнергетические установки и системы сельского хозяйства. Р.А. Амерханов, А.С. Бессараб, Б.Х. Драганов., С.П. Рудобашта, Г.Г. Шишко. /Под ред. Б.Х. Драганова. – М.: Колос-Пресс, 2002. – 424 с.: ил. 3. Драганов Б.Х. Теплотехника и применение теплоты в сельском хозяйстве. Б.Х. Драганов А.В. Кузнецов, С.П. Рудобашта. – М.: Агропромиздат, 1990. – 463 с.: ил. 4.Исаченко В.П. Теплопередача. В.П. Исаченко, В.А. Осипова, А.С. Сукомел. – М.: Энергоиздат, 1981 –.416 с.: ил. 5. Кузнецов А.В. Основы теплотехники, топливо и смазочные материалы. А.В. Кузнецов, С.П. Рудобашта, А.В. Симоненко – М.: Колос, 2001. – 248 с.:ил. 6. Михеев М.А. Основы теплопередачи. М.А. Михеев, И.М. Михеева.– М.: Энергия, 1973. –320 с.: ил. 7. Мухачев Г.А.. Термодинамика и теплопередача. Г.А. Мухачев, В.К. Щукин. – М.: Высш. шк., 1991. –.480 с.: ил. 8. Оболенский Н.В. Холодильное и вентиляционное оборудование. Н.В. Оболенский, Е.А. Денисюк – М.: КолосС, 2006. –248 с.ил. 9. Архаров А.М Теплотехника: Учеб. для втузов / А.М. Архаров, [и д.р.]; под общ. ред. В.И.Крутова.– М.: Машиностроение, 1986. – 432 с.: ил. 10.Баскаков. А.П Теплотехника: Учеб. для вузов / А.П Баскаков, [и др.]; под ред. А.П Баскакова. – М.: Энергоатомиздат, 1981. – 224 с.: ил. 11.Луканин В.Н. Теплотехника: Учеб. для вузов / В.Н. Луканин, [и др.]; под ред. В.Н.Луканина. – М.: Высш. шк., 2002. –671 с.: ил. 12. Теплоэнергетика и теплотехника: Справочник / под общей ред. В.А. Григорьева и В.М. Зорина. М.: Энергия, 1980. – 530 с.: ил. 13. Термодинамические и теплофизические свойства продуктов сгорания: Справочник / В.Е Алемасов, [и др]; под ред. академика В.П. Глушко. Т.3. М.: АН СССР, 1973. – 623 с.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |