АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определение процесса

Читайте также:
  1. A) это основные или ведущие начала процесса формирования развития и функционирования права
  2. A. Определение элементов операций в пользу мира
  3. I. Определение потенциального валового дохода.
  4. I. Определение, классификация и свойства эмульсий
  5. II. Определение геометрических размеров двигателя
  6. II.ОПРЕДЕЛЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ЛА
  7. IV. Определение массы вредных (органических и неорганических) веществ, сброшенных в составе сточных вод и поступивших иными способами в водные объекты
  8. IX. Определение размера подлежащих возмещению убытков при причинении вреда имуществу потерпевшего
  9. P.2.3.2.1(с) Определение удельной теплоемкости твердых тел
  10. V. Предварительное определение хозяйства
  11. VI. ТИПЫ ПЕРЕГОВОРНОГО ПРОЦЕССА
  12. VIII. Определение размера страховой выплаты при причинении вреда жизни и здоровью потерпевших

Термодинамический процесс, протекающий при неизменной теплоёмкости, называется п о л и т р о п н ы м.

Название “политропный” происходит от греческих слов “поли” – много и “тропос” – направление, путь. В политропном процессе в общем случае могут изменяться все термодинамические и калорические параметры кроме теплоёмкости, которую обозначают через cп.

Вывод уравнения процесса.

Для вывода уравнения используем выражение первого закона термодинамики, записанное через энтальпию и внутреннюю энергию:

dq = di - vdp и dq = du + pdv.

Выразив через теплоемкости записанные выражения, получим:

cп dT = cp dT – vdp и cпdT = cv dT + pdv.

Отсюда

п – сp)dT = -vdp и (cп –cv)dT = pdv.

Разделим почленно первое уравнение на второе:

.

Здесь левая часть равенства определяется только теплоемкостью рабочего

Разделим почленно первое уравнение на второе:

. ( 2.43)

Проведя разделение переменных, получим:

n .

После интегрирования этого соотношения в пределах от начала до конца процесса и антилогарифмирования, будем иметь:

p1 v1n = p2 v2n.

Отсюда следует, что

р vn = const. (2.44)

Выражение (2.44) называется у р а в н е н и е м п о л и т р о п н ог о п р о ц е с с а. Оно устанавливает связь между параметрами состояния в процессе с теплоемкостью

cn = const. Показатель степени n в уравнении называют п о к а з а т е - л е м п о л и р о п ы. Он принимает для каждого сn конкретное числовое значение и, как изображено на рис.2.5, может меняться от - ∞ до +∞. Здесь зависимость теплоемкости политропного процесса от показателя n получена из (2.43) в виде

. (2.45)

Рис. 2.5


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)