АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Прозрачной средой

Читайте также:
  1. В жизненном процессе человек неразрывно связан с окружающей его средой обитания.
  2. Важнейшими факторами развития личности являются (фактор — движущая сила, причина какого-л процесса, явления) противоречия, обусловленные наследственностью, средой и воспитанием.
  3. Вопрос 8. Международные стандарты по управлению окружающей средой ИСО 14000.
  4. Микроклимат и теплообмен человека с окружающей средой. Гигиеническое нормирование микроклимата.
  5. Организм как совокупность систем и функций, связей со средой. Адаптивно-защитные механизмы организма.
  6. Теплообмен излучением системы тел в прозрачной среде
  7. Типы организаций по взаимодействию с внешней средой
  8. Укажите, какое высказывание о приспособительных механизмах человека в его взаимодействии с окружающей средой является верным
  9. Экологическая психология — наука о психологических эффектах взаимодействия человека со средой.

 

При теплообмене излучением между телами необходимо учитывать результирующий эффект излучательной и поглощательной способностей этих тел. Плотность результирующего лучистого теплового потока между телами обозначают через и измеряют в (Вт/м2). Величина между твердыми телами зависит от их материала, температуры, взаимного расположения, от свойств среды, находящейся между телами.

Рассмотрим лучистый теплообмен между плоскими параллельными стенками, площади поверхностей которых достаточно велики по сравнению с расстоянием между ними, рис.8.3. Среда между стенками абсолютно прозрачна, прозрачность же стенок нулевая, т.е. D = 0.

Стенки характеризуются величинами E1, A1, T1 и E2, A2, T2, соответственно. Излучение каждой стенки частично поглощается соседней стенкой, частично ею отражается, причем этот процесс многократно повторяется и имеет затухающий характер. Определим qл при условии Т1 > Т2. Если от первой стенки на вторую поступает количество энергии Е1, то часть ее (Е1А2) поглотится второй стенкой, а отразится и направится к первой стенке величина: Е1- Е1А21(1-А2). Точно такое же рассуждение можно привести относительно излучения второй стенки. Тогда тепловой поток между стенками при однократном отражении будет равен:

Рис.8.3

Используя закон Стефана-Больцмана и учитывая, что А11 и А22,

получим:

, (8.10)

где ε пр – приведенная степень черноты стенок, ε пр = ε 1ε 2.

При учете многократного отражения и поглощения энергии стенками величина приведенной степени черноты стенок получается равной:

. (8.11)

Уравнение (8.10) используется и при вычислении плотности лучистого теплового потока между телами, когда одно тело окружено другим, рис. 8.4.

При Т12 и F2>F1 приведенная степень черноты будет иметь вид:

.

С уменьшением поверхности внутреннего тела (F1), плотность лучистого теплового потока возрастает. Это объясняется тем, что на поверхность тела 1 будет попадать все меньшая доля лучистой энергии тела 2.

Расчетная формула для оценки лучистого теплового потока между поверхностями, произ- Рис. 8.4

вольно расположенными в пространстве, рис. 8.5, выводится на основе закона Ламберта:

, (8.12)

где εпр – приведенная степень черноты, εпр = ε1 ε2 ;

– средний угловой коэффициент, который выражается формулой:

.

Значение углового коэффициента определяется графическим, аналитическим или экспериментальным путем. Для наиболее важных случаев лучистого теплообмена значения этих коэффициентов приводятся в справочной литературе, [12].

С целью уменьшения лучистого теплового потока от одной излучающей поверхности к другой, между ними устанавливаются экраны, изготовляемые из тонкостенного непрозрачного материала.

Экран, имеющий , уменьшает плотность теплового потока между телами в два раза, а при установке п экранов – в (п + 1) раз.

При вычислении теплового потока между почвой и поверхностью ограждения теплиц без технического обогрева может быть использовано выражение (8.12), где величины, относящиеся к поверхности почвы, соответствуют индексу «1», а к ограждению – «2».

Теплообмен излучением между животными и ограждениями помещения недостаточно изу-

чен. Приближенная оценка лучистого теплового

Рис. 8.5 потока некоторых задач данного теплообмена

рассмотрена в [3].

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)