|
|||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Циклы холодильных машин5.7.1. Способы получения низких температур В жилых и коммунально-бытовых помещениях, в сельскохозяйствен- ных сооружениях, при технологических процессах переработки и хранения продукции сельскохозяйственного производства и т.п. порой возникает необходимость иметь температуры более низкие, чем окружающая среда. Снизить температуру в помещении или какого-нибудь объекта можно естественным путем. В этом случае надо создать условия для самопроизвольного процесса переноса тепла к телу с более низкой температурой. Такими телами, например, являются: лед (вода в твердом состоянии), сухой лед (твердое состояние двуокиси углерода) и др. В настоящее время низкие температуры в основном создаются искусственным путем с затратой энергии. Машина, осуществляющая искусственное охлаждение с помощью подводимой энергии, называется х о л о д и л ь н о й м а ш и н о й. В холодильных машинах осуществляется переход теплоты от тел, менее нагретых, к телам, более нагретым в результате осуществления обратного цикла. Схематично это представлено рисунком 5.28 Теплота от охлаждаемого тела с температурой T Х передается в окружающую среду, имеющую температуру Т Г, в два этапа. Первый этап – самопроизвольный процесс перехода теплоты от охлаждаемого тела к рабочему. Он возможен в случае, если температура рабочего тела будет меньше, т.е. T`рm< Tx. Уменьшение температуры рабочего тела возможно при его дросселировании, при адиабатном расширении, при движении газа в вихревой трубе. Второй этап – отвод теплоты от ра- бочего тела в окружающую среду. Рис. 5.28 Для того, чтобы этот процесс протекал самопроизвольно необходимо иметь температуру рабочего тела Т`рm > T Г. Для повышения уровня температуры с T `pm до T`` pm между первым и вторым этапом к рабочему телу необходимо подвести энергию, например, в форме работы l0. Таким образом, для самопроизвольного процесса переноса тепла от охлаждаемого тела в окружающую среду, рабочее тело за счет постороннего источника должно периодически изменять свою температуру в пределах от T`pm до T``pm. . Энергетическая эффективность циклов холодильных установок характеризуется холодильным коэффициентом e: (5.13) Его величина показывает, какое количество теплоты отводится от охлаждаемого тела при затрате единицы работы. В отличие от коэффициента полезного действия тепловых двигателей, e показывает эффективность использования подведенной энергии в обратном цикле. Так как подведенная энергия может быть больше или меньше отведенной теплоты от охлаждаемого тела, холодильный коэффициент может иметь значения больше или меньше единицы. В зависимости от температуры, которая должна быть достигнута при охлаждении, различают холодильные установки умеренного холода, охватывающие область температур до -70 оС и установки глубокого холода, с областью температур до -200 оС и ниже. Последние обычно используются для сжижения воздуха и других газов. Наиболее распространенными холодильными машинами являются паровые компрессорные, абсорбционные, воздушные компрессорные.
5.7.2. Цикл паровой компрессорной холодильной машины Рабочим телом (х л а д а г е н т о м) паровых компрессорных холодильных машин являются пары различных веществ: аммиака, углекислоты, сернистого ангидрида, фреонов*. Более полная информация о хладагентах дана в работе [8]. В таблице 5.2 приведены данные некоторых хладагентов, а в табл. 7 Приложения – теплофизические свойства широго используемого хладагента – фреона – 22. Удельная холодильная мощность таких веществ высокая, что позволяет выполнять холодильные машины компактными и удобными в эксплуатации. Особенностью циклов данных холодильных машин является то, что подвод тепла к холодильному агенту протекает в процессе его кипения, а отвод – в основном в процессе конденсации.
Таблица 5.2
Принципиальная схема паровой компрессорной холодильной машины (ПКХМ) приведена на рис.5.29. Рассмотрим работу ПКХМ с сухим ходом компрессора. Сухой насыщенный пар хладагента с давлением p1, температурой T1, степенью сухости х =1 всасывается компрессором К и адиабатно сжимается. Степень повышения давления в компрессоре должна обеспечить превышение температуры хладагента над температурой окружающей среды или температурой охлаждающего теплоносителя. На сжатие затрачивается работа l0. Из компрессора перегретый пар с давлением p2 и температурой T2 поступает в теплообменник Т (конденсатор), в кото- Рис. 5.29 ром теплота q1 самопроизвольно передается какому-либо теплоносителю. Процесс отвода тепла идет при постоянном давлении p3=p2, при этом температура уменьшается до температуры насыщения T3=Tн, и пар полностью конденсируется, х = 0. Из конденсатора хладагент подается в дроссельное устройство Д В дросселе давление хладагента снижается до величины p4., что приводит к снижению его температуры фазового перехода.. Степень дросселирования устанавливается токой, чтобы Т4 была меньше температуры охлаждаемого тела. Уже в дроссельном устройстве хладагент начинает закипать.. Далее парожидкостная смесь (влажный хладагент) поступает в испаритель И. В испарителе к хладагенту при неизменном его давлении подводится тепло от охлаждаемого тела. Температура хладагента не изменяется (происходит фазовый переход - выкипает жидкая фаза во влажном паре) до состояния, когда степень сухости пара достигнет величины х =1. Образовавшийся пар при р 1= р 4 и Т 1= Т 4 вновь засасывается компрессором. И цикл повторяется. На рис. 5.30 изображен идеальный цикл паровой компрессорной холодильной машины в Ts -координатах. Он состоит из процессов: 1-2 – адиабатное сжатие пара в компрессоре; 2-2¢ – изобарное охлаждение перегретого пара в конденсаторе; 2¢-3 – конденсация пара при постоянных температуре и давлении; 3-4 – изоэнтальпа дросселирования; 4-1 – изотерма подвода тепла к влажно- Рис. 5.30 му пару от охлаждаемого тела в испарителе. Давление в этом процессе не изменяется. Холодильный коэффициент рассматриваемого цикла вычисляется по формуле: или , (5.14) где q2 = i1 - i4; l0 = i2 – i1. Для простоты вычисления холодильного коэффициента на практике используют pi-диаграммы хладагентов. На рис.5.31 изображен цикл паровой компрессорной холодильной машины в pi -координатах. 1-2 – адиабата сжатия рабочего тела; 2-2`– изобара охлаждения перегретого пара; 2`-3 – изобара отвода тепла при конденсации; 3-4 – изоэнтальпа дросселирования; 4-1 – изобара подвода тепла к хладагенту в испарителе. Рис. 5.31 Преимущество изображения цикла холодильной установки в pi-координатах состоит в том, что изменение энтальпий в процессах измеряется отрезками оси абсцисс. Холодильный коэффициент, определенный с помощью pi -диаграммы, запишется как .
5.7.3. Цикл абсорбционной холодильной машины Рассмотрим цикл холодильной установки, в которой задействован процесс а б с о р б ц и и (поглощение паров хладагента всем объемом жидкого растворителя с образованием бинарной смеси). Перепад давления для циркуляции хладагента создается в результате процессов абсорбции и выпаривания в дополнительном контуре, а понижение температуры рабочего тела происходит в процессе дросселирования. Наибольшее применение получили водоаммиачные холодильные машины, в которых аммиак является хладагентом, имеющим более низкую температуру кипения, а вода – абсорбентом. Схема абсорбционной водоаммиачной холодильной машины приведена на рис.5.32. Из испарителя И аммиак с температурой T1 и давлением p1 поступает в абсорбер А. Вода, используемая. в качестве абсорбента, поглощает аммиак с выделением теплоты. Чтобы не уменьшалась поглотительная способность раствора, теплота абсорбции q3 отводится из абсорбера каким-либо теплоносителем. Полученный крепкий водоаммиачный раствор перекачивается насосом Н в парогенератор П, где в процессе подвода теплоты q0 происходит выпаривание из раствора аммиака. В парогенераторе давлении p2 создается таким, чтобы температура аммиачного пара превышала температуру теплоносителя, охлаждающего конденсатор К. Рис. 5.32 Процесс охлаждения и конденсации хладагента протекает при постоянном давлении. В дросселе Д 1, вследствие уменьшения давления, аммиак начинает кипеть, его температура снижается. В испарителе за счет подвода тепла q2 от охлаждаемого тела продолжается фазовый переход хладагента из жидкого состояния в газообразное. Далее цикл повторяется. В контуре циркуляции абсорбента установлен дроссель Д 2 для понижения давления воды до p1. Цикл абсорбционной водоаммиачной холодильной машины представлен на рис. 5.33. Процессы, происходящие с аммиаком в абсорбере и в парогенераторе, допустимо заменить условным процессом 1-2, близким к изохоре. В этом процессе повышаются давление, температура и растет энтропия. При таком допущении цикл состоит из процессов: 1-2 – изохора повышения температуры и давления; 2-2`- изобара отвода тепла в конденсаторе до температуры конденсации аммиака; 2-3 – изотерма конденсации хладагента; 3-4 – изоэнтальпа дросселирования; 4-1 – изотерма кипения аммиака. Холодильная мощность водоаммиачной холодильной машины Nx определяется как Nx= q 2 · x, (5.15) где q 2 – тепловая нагрузка испарителя; x – массовый расход аммиака. Тепловая нагрузка q2 входит в уравнение теплового баланса абсорбционной машины q1 +q3 = q2 + qo + lн, Рис. 5 33 где lн – удельная работа, затраченная на привод водяного насоса. Величина ly, незначительна, и ею в расчетах обычно пренебрегают. Степень экономичности работы абсорбционной холодильной машины характеризуется к о э ф ф и ц и е н т о м и с п о л ь з о в а н и я т е п л о- т ы , равным отношению тепловой нагрузки испарителя q 2 к подведенной теплоте в парогенераторе q0: . (5.16) В работах [1, 8, 9] рассмотрен анализ циклов воздушно-компрессорных, пароэжекторных, термоэлектрических, холодильных машин и установок с вихревой трубой.
5.8. Цикл теплового насоса В процессе работы холодильной установки происходит трансформация теплоты от низкотемпературных тел к высокотемпературным. Это позволяет использовать холодильный цикл в целях отопления. Холодильные установки, используемые для нагревания объектов, именуют т е п л о в ы м и н а с о а м и или т р а н с ф о р м а т о р а м и т е п л а. Тепловым насосом называют установку, при помощи которой осуществляется перенос энергии в форме тепла от более низкого к более высокому температурному уровню, необходимому для теплоснабжения.. Для осуществления теплонаносного процесса необходима затрата внешней энергии. От вида используемой энергии тепловые насосы классифицируются на компрессорные, абсорбционные, струйные, термоэлектрические и др. Источником теплоты низкой температуры для теплового насоса служит окружающая среда, например, вода рек, озер и других водоемов, а в качестве рабочего тела обычно используются фреоны. На рис. 5.34 приведена схема теплового насоса. В испаритель И парожидкостная смесь поступает при низкой температуре. В процессе подвода от внешней среды теплоты q2 фреон полностью испаряется и поступает в компрессор К. Сжатие газа в компрессоре должно осуществляется до температуры, превышающей температуру нагреваемого объекта. В рекуператорер – конденсаторе РК энергия в форме тепла q1 отводится низкотемпературным теплоносителем к тепловым приборам ТП в помещение. Сконденсированный фреон поступает в дроссель, где его давление и температура понижаются. Далее цикл повторяется. Потребитель теплоты получает, таким образом, кроме “даровой” теплоты q2, перенесенной от окружающей среды, также теплоту, эквивалентную затраченной работе l0. В координатах Ts цикл теплового насоса изображается подобно циклу ПКХМ (рис.5.30). Экономичность цикла теплового насоса характеризуется к о э ф ф и ц и- Рис. 5.34 е н т о м п р е о б р а з о в а н и я теплоты или к о э ф ф и ц и е н о м т р а н с ф о р м а ц и и, . (5.17) При коэффициенте преобразования теплоты = 3...4 потребитель получит теплоты в три–четыре раза больше, чем при обычном электронагреве. Экономичность теплонаносной установки снижается с ростом отношения Тв /Тн (Тв, Т н – верхний и нижний температурные уровни, К) см. [12]. Тепловые насосы наиболее целесообразно использовать для обеспечения постоянной тепловой нагрузки при наличии источника, способного сохранять
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |