АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теплоемкость гав и газовых смесей

Читайте также:
  1. ВРЕД КУРИТЕЛЬНЫХ СМЕСЕЙ
  2. Задачи по теме: «Теплоемкость, уравнение Кирхгоффа»
  3. Категория и группа взрывоопасных смесей, которые могут быть в технологическом процессе
  4. Меры безопасности при укладке бетонных и асфальтовых смесей и устройству рулонных кровель
  5. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕПЛОЕМКОСТЬ ИНДИВИДУАЛЬНЫХ ВЕЩЕСТВ
  6. Одним из основных теплофизических свойств тел, используемых в термодинамике, является теплоемкость.
  7. Одним из основных теплофизических свойств тел, используемых в термодинамике, является теплоемкость.
  8. Охрана недр нефтяных и газовых месторождений.
  9. ПОСЛЕДСТВИЯ УПОТРЕБЛЕНИЯ КУРИТЕЛЬНЫХ СМЕСЕЙ
  10. Приложение 2 – Средняя массовая теплоемкость при постоянном
  11. Пример бального метода оценки технического состояния силовых трансформаторов (автотрансформаторов) и элегазовых выключателей
  12. Работы по укладке асфальтовых смесей

2.2.1. Понятие теплоемкости

Экспериментально установлено, что величина теплоты, необходимая

для изменения температуры конкретного количества вещества системы, пропорциональна разности конечной и начальной температур:

Q = C (T2 – T1),

где С – коэффициент пропорциональности.

В общем случае коэффициент С характеризует физическое свойство

системы, которое называется т е п л о е м к о с т ь ю.

Количественно теплоемкость равна теплоте, которой обменивается с окружающей средой система при изменении ее температуры на один кельвин. Аналитически это определение записывается в виде

С = . (2.24)

За единицу теплоемкости принят джоуль на кельвин (Дж/К).

Теплоемкость, отнесенную к какой-либо количественной единице вещества, называют у д е л ь н о й. Для газов широко используются массовая, молярная и объемная удельные теплоемкости.

Массовая теплоемкость численно равна количеству теплоты, необходимому для изменения температуры одного килограмма газа на один кельвин.

Обозначают удельную массовую теплоемкость строчной буквой с и выражают в Дж/(кг· К).

Теплоемкость одного моля газа называют м о л я р н о й теплоемкостью. Ее обозначают и выражают в Дж/(моль· К).

Теплоемкость единицы объема газа при нормальных физических условиях именуют о б ъ е м н о й теплоемкостью. Ее обозначают с′ и выражают в Дж/(м3 ·К).

Массовая, молярная и объемная теплоемкости связаны соотношением:

с = , (2.25)

где – молярная масса газа;

ρ – плотность газа при нормальных физических условиях.

Численное значение теплоемкости газа так же, как и теплоемкость твердых и жидких тел, зависит от его природы и уровня температуры, при которой она определяется.

Однако кардинальным отличием понятия теплоемкости газа от теплоемкости жидких и твердых тел является то, что на величину теплоемкости газа специфическое влияние оказывает характер процесса, в котором она вычисляется. Так, в адиабатном процессе, где dQ = 0, теплоемкость равна нулю. В процессе с постоянной температурой (T = const) теплоемкость равна бесконечности (c = ± ∞). Теплоемкость газа, присущую тому или иному процессу, принято обозначать индексом, характеризующим конкретный процесс. Если теплоемкость определяется в процессе при постоянном давлении, то ее обозначают cp и т.д.

 

2.2.2. Теплоемкости cp и cv

В термодинамике широко используются две теплоемкости – cp (в про-

цессе при постоянном давлении) и cv (в процессе при постоянном объеме). Проанализируем их особенности. С этой целью представим два цилиндра с поршнями (рис. 2.2). В цилиндрах находится по одному килограмму одного и того же газа. Первоначальные значения давления и удельного объема в цилиндрах одинаковы. Поршень в первом цилиндре закреплен, а во втором – может свободно перемещаться. Поставим задачу: изменить температуру газа в каждом цилиндре на одну и туже величину dT.

. Рис. 2.2

Для цилиндра 1 запишем уравнение первого закона термодинамики в виде

dqv = du + pdv.

Разделим его на dT и, принимая во внимание, что dv = 0, получим:

откуда

cv = . (2.26)

Интегрированием уравнения (2.26) от начального до конечного состояния процесса получим связь между изменением внутренней энергии и

температуры:

∆ u = cv ∆T. (2.27)

Проделав аналогичные операции с уравнением первого закона термодинамики для газа, находящегося во втором цилиндре, получим:

cp = (2.28)

Отсюда следует соотношение между изменениями энтальпии и температуры в виде

∆i = cp ∆T. (2.29)

Теплоемкости в процессах при постоянном давлении и постоянном объеме имеют не только различные математические выражения, но и различные числовые значения. Так, доказывается, что cp >cv. Это видно из сравнения уравнений (2.26) и (2.28). Поскольку при одинаковом изменении температуры величина di > du, то, следовательно, cp > cv .

Обращаясь к рассмотренному примеру, можно пояснить сущность неравенства cp > cv. Так, при одинаковом изменении температуры газа в цилиндрах величина теплоемкостей определяется количеством подведенной теплоты. Ко второму цилиндру необходимо подвести больше теплоты, так как требуется не только изменить температуру газа на одно и то же число градусов, но и совершить некоторую работу расширения.

Можно определить, на сколько cp > cv. Для этого вычтем из (2.28) выражение (2.26) и, учитывая соотношение (1.6), получим:

cp – cv =

Дифференцируя уравнение состояния для 1 кг газа, будем иметь:

d(pv)=RdT

Следовательно,

cp – cv = R. (2.30)

Выражение (2.30) называется у р а в н е н и е м М а й е р а. Оно показывает, что для любого газа разность между теплоемкостями при p =const и v =const численно равна величине газовой постоянной этого газа.

Отношение теплоемкостей c p и c v называют п о к а з а т е л е м

а д и а б а т ы и обозначают буквой к, т.е.

к = . (2.31)

Величина к зависит от природы газа и всегда больше единицы. По известным значениям R и к можно вычислить как cp , так и cv, используя следующие выражения:

сp = R, (2.32)

c v = R. (2.33)

2.2.3. Зависимость теплоемкости от температуры

Теоретические исследования и опытные данные показывают, что при повышении температуры газа колебательные движения атомов в молекуле становятся интенсивнее. При этом для повышения температуры газа на каждый градус необходимо все большее количество энергии в форме теплоты. Таким образом, теплоемкость газа представляет собой функцию температуры. В общем случае зависимость теплоемкости газа от температуры можно представить в виде степенного ряда

c = c0 + α t + β t2 + t3 +…, (2.34)

где c0 – значение теплоемкости при t = 0 0 С;

α, β, – числовые коэффициенты.

Значения c 0, α, β, определяются эмпирическим путем.

В качестве примера приведем квадратичную зависимость молярной теплоемкости азота от температуры:

= 29,02 + 0,00531 t + 0,000000127 t 2, кДж/(моль∙ К).

В диапазоне температур, имеющих место в современных тепловых машинах, зависимость теплоемкости от температуры с достаточной степнью

точности можно считать линейной. Это значит, что в уравнении (2.34)

можно учитывать только два первых слагаемых, т.е.:

c = c0t (2.35)

Теплоемкость, соответствующую данной температуре, называют

и с т и н н о й. и вычисляют по уравнению (2.34) или (2.35).

В теплотехнических расчетах часто возникает необходимость знать с р е дн е е значение теплоемкости в определенном интервале температур.

Средней теплоемкостью c ср данного процесса в интервале температур от t 1 до t2 называют отношение теплоты процесса q 1-2 к разности температур t 2 – t 1, т.е.

c ср = .

После подстановки значений q 1-2 = и с из (2.35), получим:

с с р0 + α . (2.36)

В Приложении табл.5 приведены значения истинной теплоемкости отдельных газов, а в табл. 6 – их средние значения в диапазоне температур от

0 до 2300 0С. При необходимости вычисления средней теплоемкости в диапазоне температур от t 1до t 2 можно применить формулу

сср (2.37)

Показатель адиабаты к также зависит от температуры. Это можно показать, представив соотношение (2.31) в виде

к = (2.38)

Экспериментальное изучение зависимости c = f (t) для идеальных газов показывает, что у каждого газа существует некоторый интервал температур, в котором его теплоемкость практически постоянна.

Идеальный газ в том интервале температур, где теплоемкость не изменяется, называется с о в е р ш е н н ы м..

Соотношения (2.27) и (2.29) справедливы только для совершенного оаза

Опытное изучение зависимости теплоемкости газов от давления показывает, что это влияние незначительное, и в практических расчетах его можно не учитывать.

 

2.2.4 Теплоемкость газовых смесей

В справочной литературе приводятся теплоемкости только для отдельных газов, в то время как при тепловых расчетах приходится встречаться с газовыми смесями. Ниже приведены выражения для вычисления теплоемкости смеси газов, если она задана парциальными давлениями, массовыми или объемными долями.

сp см = , cv cм = . (2.39)

cp см = , cv cм = (2.40)

. (2.41)

Для смеси газов справедливо уравнение Майера, которое будет иметь вид

сp см – сv см = R см. (2.42)

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)