АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Раздел 7

Читайте также:
  1. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  2. III Раздел. КОСТЮМ ЭПОХИ ВОЗРОЖДЕНИЯ.
  3. IV Раздел. ЕВРОПЕЙСКИЙ КОСТЮМ XVII века.
  4. IV раздел. Организация рациональной двигательной активности
  5. V Раздел. Европейский костюм XVIII века.
  6. VI раздел. Создание представлений о здоровом образе жизни
  7. А. Все разделы внутренних болезней.
  8. А. Общая морфология и подразделение на дольки
  9. А. Подразделение на 3 доли
  10. Аллах извлек потомство Адама из его спины после сотворения его и разделил их на обитателей Рая и Ада
  11. В) Международного разделения труда и специализации производства и интеграции хозяйственных процессов
  12. В) Совокупность взаимосвязанных и взаимодействующих друг с другом национальных рынков отдельных государств, участвующих в международном разделении труда

Основы теории теплообмена. Основные понятия.

Теплопроводность

Температурное поле. Уравнение теплопроводности

Стационарная теплопроводность.

 

Основные понятия и определения.

Теория теплообмена изучает процессы распространения теплоты в твердых, жидких и газообразных телах. Перенос теплоты может передаваться тремя способами:

  • теплопроводностью;
  • конвекцией;
  • излучением (радиацией).

Процесс передачи теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты. При нагревании тела, кинетическая энергия его молекул возрастает и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии. [1,3,4,5,7,8]

Конвекция – это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. При этом, перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально. Этот вид передачи теплоты сопровождается всегда теплопроводностью. Одновременный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом.
В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.
Процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн называется излучением (радиацией). Этот процесс происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение э/м волн в пространстве, поглощение энергии излучения другим телом. Совместный теплообмен излучением и теплопроводностью называют радиационно-кондуктивным теплообменом.
Совокупность всех трех видов теплообмена называется сложным теплообменом.
Процессы теплообмена могут происходит в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по разному и описывается различными уравнениями.
Процесс переноса теплоты может сопровождаться переносом вещества (массообмен). Например испарение воды в воздух, движение жидкостей или газов в трубопроводах и.т.п. и.т.д. Тогда процесс теплообмена усложняется, так как теплота дополнительно переносится с массой движущегося вещества.

 

Теплопроводность.

Температурное поле. Уравнение теплопроводности.

Будем рассматривать только однородные и изотропные тела, т.е. такие тела, которые обладают одинаковыми физическими свойствами по всем направлениям. При передачи теплоты в твердом теле, температура тела будет изменяться по всему объему тела и во времени. Совокупность значений температуры в данный момент времени для всех точек изучаемого пространства называется температурным полем:

t = f(x,y,z,τ),

где:t –температура тела;
x,y,z -координаты точки;
τ - время.
Такое температурное поле называется нестационарным ∂t/∂  0, т.е. соответствует неустановившемуся тепловому режиму теплопроводности
Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным:

t = f(x,y,z), ∂t/∂ = 0

Уравнение двухмерного температурного поля:
для нестационарного режима:

t = f(x,y,τ); ∂t/∂z = 0

для стационарного режима:

t = f(x,y), ∂t/∂z = 0; ∂t/∂ = 0

Уравнение одномерного температурного поля:
для нестационарного режима:

t = f(x,τ); ∂t/∂y = ∂t/∂z = 0; ∂t/∂  0

для стационарного режима:

t = f(x); ∂t/∂y = ∂t/∂z = 0; ∂t/∂ = 0

Изотермической поверхностью называется поверхность тела с одинаковыми температурой.
Рассмотрим две изотермические поверхности с температурами t и t + ∆t.Градиентом температуры называют предел отношения изменения температуры∆tк расстоянию между изотермами по нормали ∆n, когда стремится к нулю:

gradt = |gradt| = lim[∆t/∆n]∆n→0 = ∂t/∂n

Температурный градиент-это вектор, направленной по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной температуры t по нормалиn:

gradt = ∂t/∂n no,

где:no – единичный вектор.
Количество теплоты, проходящее через изотермическую поверхность F в единицу времени называется тепловым потоком – Q, [Вт=Дж/с].
Тепловой поток, проходящий через единицу площади называют плотностью теплового потока – q = Q / F, [Вт/м2]
Для твердого тела уравнение теплопроводности подчиняется закону Фурье:
Тепловой поток, передаваемая теплопроводностью,||пропорциональна градиенту температуры и площади сечения,||перпендикулярного направлению теплового потока.

Q = -λ∙F∙ ∂t/∂n,

или

q = -λ ∙ ∂t/∂n ∙no = -λ∙gradt,

где: q – вектор плотности теплового потока;
λ – κоэффициент теплопроводности, [Вт/(м∙К)].
Численное значение вектора плотности теплового потока равно:

q = -λ∙ ∂t/∂n = -λ∙|gradt|,

где:|gradt|- модуль вектора градиента температуры.
Коэффициент теплопроводности является физическим параметром вещества, характеризующим способность тела проводит теплоту, Она зависит от рода вещества, давления и температуры. Также на её величину влияет влажность вещества. Для большинства веществ коэффициент теплопроводности определяются опытным путем и для технических расчетов берут из справочной литературы.
Дифференциальное уравнение теплопроводности для трехмерного нестационарного температурного поля имеет следующий вид:

где: а = λ/(ρ·ρ) –коэффициент температуропроводности [м2/с], характеризует скорость изменения температуры.
Для стационарной задачи, дифференциальное уравнение имеет вид:

Стационарная теплопроводность через плоскую стенку.

q = λ/δ∙(tст1 – tст2) = λ/δ∙Δt,

Если R =δ/λ -термическое сопротивление теплопроводности стенки [(м2∙К)/Вт], то плотность теплового потока:

q = (tст1 – tст2)/R.

Общее количество теплоты, которое передается через поверхность F за время τ определяется:

Q = q∙F∙τ = (tст1 – tст2)/R·F∙τ.

Температура тела в точке с координатой х находится по формуле:

tx = tст1 – (tст1 – tст2)∙x/ δ.

2).Многослойная плоская стенка.
Рассмотрим 3-х слойную стенку. Температура наружных поверхностей стенокtст1 и tст2, коэффициенты теплопроводности слоевλ1, λ2, λ3, толщина слоевδ1, δ2, δ3.

Плотности тепловых потокок через каждый слой стенки:

q = λ11∙(tст1 – tсл1),
q = λ22∙(tсл1 – tсл2),
q = λ33∙(tсл2 – tст2),

Решая эти уравнения, относительно разности температур и складывая, получаем:

q = (t1 – t4)/(δ11 + δ22 + δ33) = (tст1 – tст4)/Ro ,

где: Ro = (δ11 + δ22 + δ33) – общее термическое сопротивление теплопроводности многослойной стенки.
Температура слоев определяется по следующим формулам:

tсл1 = tст1 – q∙(δ11).
tсл2 = tсл1 – q·δ22). [1,3,4,5,7,8]

 

Контрольные вопросы

1. Перенос теплоты может передаваться какими способами?

2. Конвекция – это?

3. Теплопроводность?

4. Коэффициент теплопроводности?

5. Численное значение вектора плотности теплового потока равно?

6. Что называется тепловым потоком?


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)