АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Силы поверхностного натяжения

Читайте также:
  1. Локтевая группа поверхностного слоя мышц предплечья.
  2. Силы поверхностного натяжения

Молекулы жидкости притягиваются друг к другу с определённой силой. Причём внутри жидкости силы, действующие на любую молекулу, уравновешиваются, т.к. со всех сторон от неё находятся одинаковые молекулы, расположенные на одинаковом расстоянии. Однако молекулы жидкости, находящиеся на границе (с газом, твердым телом или на границе двух несмешивающихся жидкостей) оказываются в неуравновешенном состоянии т.к. со стороны другого вещества действует притяжение других молекул, расположенных на других расстояниях. Возникает преобладание какой-то силы. Под влиянием этого воздействия поверхность жидкости стремится принять форму, соответствующую наименьшей площади. Если силы внутри жидкости больше наружных сил, то поверхность жидкости стремится к сферической форме. Например, малые массы жидкости в воздухе стремятся к шарообразной форме, образуя капли. Может иметь место и обратное явление, которое наблюдается как явление капиллярности. В трубах малого диаметра (капиллярах) наблюдается искривление свободной поверхности, граничащей с газом или с парами этой же жидкости. Если поверхность трубки смачивается, свободная поверхность жидкости в капилляре вогнутая. Если нет смачивания, свободная поверхность выпуклая, как при каплеобразовании. Во всех этих случаях силы поверхностного натяжения обусловливают дополнительные напряжения pпов в жидкости. Величина этих напряжений определяется формулой

.

где Г - коэффициент поверхностного натяжения,

r - радиус сферической поверхности, которую принимает жидкость.

Эти дополнительные напряжения легко наблюдать, если в сосуд с жидкостью погрузить капилляр. В этом опыте возможны два варианта. В первом случае жидкость, за счёт поверхностных сил, поднимется по капилляру на некоторую высоту. Тогда говорят о капиллярном поднятии, и наблюдается явление смачивания.

Во втором варианте жидкость опускается в капилляре ниже уровня жидкости в сосуде. Такое явление называют капиллярным опусканием, которое происходит при несмачивании.

В обоих случаях величина пропорциональна дополнительному напряжению, вызванному в жидкости поверхностными силами. Она равна

;

где Г - коэффициент поверхностного натяжения,

d – диаметр капилляра,

k – коэффициент пропорциональности, который выражается следующей формулой ,



 

и зависит от жидкости. Например, при t = 20 єC, k спирта составляет 11,5, ртути –10,15 а воды - 30.

Поднятие воды в капиллярах почвы и грунтов является важным фактором в распространении воды. Высота капиллярного поднятия в грунтах изменяется от нуля (галечники) почти до 5 м (глины). При этом с увеличением минерализации воды высота капиллярного поднятия увеличивается. Поверхностное натяжение и капиллярные эффекты определяют закономерности движения жидкости в условиях невесомости.

К поверхностным силам относятся и силы давления, т.к. они действуют на поверхности жидкости.

Вопрос№10

Силы давления

Давление – напряжение, возникающее в жидкости под действием сжимающих сил.

Рассмотрим объем жидкости, находящейся в равновесии (рис. ).

Выделим внутри этой жидкости на глубине h горизонтальную элементарную площадку DS, параллельную свободной поверхности жидкости.( Свободной называют поверхность находящуюся на границе раздела жидкости и газа.) Спроектировав эту площадку на свободную поверхность жидкости, получим вертикальный параллелепипед, у которого нижнее основание — площадка DS, а верхнее — ее проекция DS', при этом DS = DS'. На площадку DS действует сила гидростатического давления DР, равная произведению массы выделенного столба (параллелепипеда) жидкости на ускорение свободного падения:

Отношение силы DР к площадке DS, на которую она действует, представляет собой силу, действующую на единицу площади и называется средним гидростатическим давлением или средним напряжением гидростатического давления по площади DS:

Истинное давление Р в различных точках этой площадки DS может быть различным; Рср будет тем меньше отличаться от действительного в точке, чем меньше будет площадь DS. Таким образом, если размер площадки DS уменьшать, приближать к нулю, то отношение DР /DS будет стремиться к некоторому пределу, выражающему истинное гидростатическое давление в точке:

Гидростатическое давление Р (Па) измеряют в единицах силы, деленных на единицу площади, оно характеризуется тремя основными свойствами. Если давление отсчитывается от нуля, оно называется абсолютным и обозначается , если от атмосферного, – избыточным и обозначается . Атмосферное давление обозначается . Кроме того, различают давление гидродинамическое и гидростатическое. Гидродинамическое давление возникает в движущейся жидкости. Гидростатическое давление – давление в покоящейся жидкости.

Вопрос№11


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)