АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Анализ свойства вязкости

Читайте также:
  1. I. Понятие и анализ оборотного капитала
  2. III. Анализ изобразительно-выразительных средств, определение их роли в раскрытии идейного содержания произведения, выявлении авторской позиции.
  3. III. Анализ представленных работ
  4. SWOT - анализ предприятия. Анализ возможностей и угроз.
  5. SWOT анализ Липецкой области
  6. SWOT анализ Пермской области
  7. SWOT анализ Свердловской области
  8. SWOT анализ Тамбовской области
  9. SWOT анализ Чувашской республики
  10. SWOT-анализ деятельности предприятия ООО «Кока-Кола»: выявление альтернативных стратегических задач
  11. SWOT-анализ организации
  12. SWOT-анализ рекламного интернет-агентства «И-Маркет»

Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

где јt – коэффициент динамической вязкости при заданной температуре,

ј0 – коэффициент динамической вязкости при известной температуре (для минеральных масел при 50 0C),

T – заданная температура,

T0–температура, при которой измерено значение ј0 (50 0C для минеральных масел),

kt – коэффициент, для минеральных масел равный 0,02-0,03,

e – основание натурального логарифма равное 2,718282.

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой

где јP – коэффициент динамической вязкости при заданном давлении,

ј0 – коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),

P – заданное давление,

P0–давление, при которой измерено значение ј0,

kP – коэффициент, для минеральных масел равный 0,002-0,003.

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Для примера приведём значения кинематического коэффициента вязкости n для некоторых жидкостей: масла индустриальные (по ГОСТ 20799-75) при температурах 50 0C: И-5А – 4-5 сСт, И-12А – 10-14 сСт, И-40А – 35-45 сСт; вода пресная при 20 0C - 0,0101Ст; ртуть при 150C 0,0011- Ст, сталь жидкая при 1550 0C – 0,0037 Ст.

Вязкость жидкости - это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.

Жидкости, которые подчиняются описанному закону жидкостного трения Ньютона, называются ньютоновскими жидкостями. Однако есть жидкости, трение в которых описывается другими закономерностями.

Вопрос№3

Дифференциальные уравнения равновесия покоящейся жидкости иначе называют дифференциальными уравнениями Эйлера. Они получены для общего случая относительного покоя жидкости. Возможны следующие варианты относительного покоя.

Первый вариант соответствует абсолютному покою или равномерному движению сосуда с жидкостью. Такой вариант рассматривался при выводе основного уравнения гидростатики.

Второй вариант – вращение сосуда с жидкостью с постоянной угловой скоростью Й вокруг центральной оси. Несмотря на то, что вся масса жидкости вращается вместе с сосудом, частицы жидкости друг относительно друга не перемещаются, следовательно, весь объём жидкости, как и в первом случае, представляет собой как бы твёрдое тело. Давление в каждой точке жидкости не меняется во времени и зависит только от координат. По этим причинам жидкость подпадает под определение покоящейся.

Третий вариант аналогичен второму, только вращение осуществляется вокруг произвольно расположенной вертикальной оси. Во втором и третьем случае свободная поверхность жидкости принимает новую форму, соответствующую новому равновесному положению жидкости.

В четвёртом варианте сосуд с жидкостью движется прямолинейно и равноускоренно. Такой случай проявляется, например, в процессе разгона или остановки автоцистерны с жидкостью. В этом случае жидкость занимает новое равновесное положение, свободная поверхность приобретает наклонное положение, которое сохраняется до изменения ускорения. Частицы жидкости друг относительно друга находятся в покое, и давление зависит только от координат.

Во всех перечисленных случаях на жидкость действуют, во-первых, силы веса, во-вторых, силы инерции, в-третьих, силы давления.

Рассмотрим в произвольной системе координат X,Y,Z произвольную точку A. Вблизи этой точки выделим элементарный объём в форме прямоугольного параллелепипеда, грани которого для простоты математических выражений параллельны координатным плоскостям.

Заметим следующее:

ь давление является функцией координат (при этом в любой точке оно по всем направлениям одинаково),

ь при переходе к точкам Ax(Ay, Az) меняется только одна координата на бесконечно малую величину dx(dy, dz), поэтому функция получает приращение только по одной координате,

ь это приращение равно частному дифференциалу по соответствующей координате

 

Таким образом, разность давлений, действующих на противоположные грани параллелепипеда (внутрь рассматриваемого объёма), перпендикулярные соответствующим осям, будет иметь вид:

Исходя из этого, определим разности сил, вызванных давлением, в проекции на оси координат

Кроме сил давления на параллелепипед будут действовать инерционные силы в общем случае определяемые массой и ускорениями X, Y, Z на соответствующие оси

Учитывая, что параллелепипед находится в покое, сумма сил, действующих на него, равна 0:

 

Разделив систему уравнений сил на массу рассматриваемого параллелепипеда, получим систему уравнений Эйлера:

На практике, чтобы избавиться от частных производных, используют одно уравнение, заменяющее систему. Для этого первое уравнение умножают на dx, второе на dy, третье на dz и складывают их:

В этой формуле сумма в скобках является полным дифференциалом давления, который в результате оказывается равным

Полученное уравнение показывает, как изменяется давление при изменении координат внутри покоящейся жидкости для общего случая относительного покоя. Это уравнение впервые получил Леонард Эйлер в 1755

Вопрос№4


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)