|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Струйная модель потока
В гидравлике рассматривается струйная модель движения жидкости, т.е. поток представляется как совокупность элементарных струек жидкости, имеющих различные скорости течения us. Индекс S означает (напоминает), что в каждой точке живого сечения скорости различны. Элементарные струйки как бы скользят друг по другу. Они трутся между собой и вследствие этого их скорости различаются. Причём, в середине потока скорости наибольшие, а к периферии они уменьшаются. Распределение скоростей по живому сечению потока можно представить в виде параболоида с основанием, равным S. Высота его в любой точке равна скорости соответствующей элементарной струйки uS. Площадь элементарной струйки равна dS. В пределах этой площади скорость можно считать постоянной. Понятно, что за единицу времени через живое сечение потока будет проходить объём жидкости Vt, равный объёму параболоида. Этот объём жидкости и будет равен расходу потока. С учётом понятия средней скорости, которая во всех точках живого сечения одинакова, за единицу времени через живое сечение потока будет проходить объём жидкости (обозначим его Vtср), равный: Vtср=SVср. Если приравнять эти объёмы Vtср = Vt=параболоида, можно определить значение средней скорости потока жидкости: В дальнейшем среднюю скорость потока жидкости будем обозначать буквой V без индекса ср. При неравномерном движении средняя скорость в различных живых сечениях по длине потока различна. При равномерном движении средняя скорость по длине потока постоянна во всех живых сечениях. Уравнение неразрывности жидкости. В гидравлике обычно рассматривают потоки, в которых не образуются разрывы. Если выделить в потоке два любых сечения, отстоящих друг от друга на некотором расстоянии, то можно записать: или где Q— расход жидкости, м3/с; v — средняя скорость в сечении при установившемся движении, м/с; S— площадь живого сечения, м2 Как следует из вышерассмотренного уравнения расход, проходящий через все живые сечения потока, неизменен, несмотря на то, что в каждом сечении средняя скорость и площадь живого сечения различны. Уравнение называют уравнением неразрывности потока при установившемся движении. Из уравнения получим важное соотношение
Уравнение неразрывности потока — одно из основных уравнений гидродинамики. Оно выводится из уравнения неразрывности для элементарной струйки несжимаемой жидкости при установившемся движении: где v — местные скорости в каждом живом сечении струйки, м/с; DS — площадь живого сечения элементарной струйки, м2; D Qn— элементарный расход, м3/с
Рис.- схема демонстрирующая неразрывность потока Вопрос№21 Интегрирование уравнений Эйлера возможно для двух случаев: потенциального движения ь поле сил, имеющих потенциал, и для установившегося движения (не обязательно потенциального), но также в поле сил, имеющих потенциал. Интегрирование уравнений Эйлера возможно для ряда частных случаев течения жидкости и газа. Для удобства интегрирования представим уравнения Эйлера в иной форме. Прибавим и вычтем из левой части первого равенства сумму uyduy / dx - - uzduz / dx; второго и третьего - суммы Uxdux / dy UzdUi / БЕРНУЛЛИ ИНТЕГРАЛ уравнений гидродинамики - интеграл, определяющий давление р в каждой точке установившегося потока идеальной однородной жидкости или баротропного газа (p = F(ρ)) через скорость v потока в соответствующей точке и через силовую функцию u(х, у, z) объемных сил:
(1) Постоянная С имеет для каждой линии тока свое значение, меняющееся при переходе от одной линии тока к другой. Если движение потенциальное, то постоянная С для всего потока одна и та же. Полный напор состоит из суммы приращений напоров: скоростного, пьезометрического и геометрического. В зависимости от типа рабочих органов доля преобразованного скоростного, пьезометрического и геометрического напора в полном напоре различна Полный напор определяет энергию потока газа. Если газ рассматривать как идеальную жидкость, то энергия в каждом сечении потока будет оставаться неизменной, поскольку все реальные пазы обладают вязкостью и при движении их энергия будет убывать от сечения к сечению по направлению движения потока. Вопрос№22 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |