АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Нелинейная регрессия. Различают 2 класса нелинейных регрессий:

Читайте также:
  1. C.1. Парная регрессия и корреляция
  2. C.2. Множественная регрессия и корреляция
  3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
  4. ЗАДАНИЕ 3. МНО ЖЕСТВЕННАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ
  5. Линейная множественная регрессия
  6. Линейная множественная регрессия.
  7. Линейная парная регрессия
  8. Линейная регрессия
  9. Линейная регрессия
  10. Линейная регрессия сущность, оценка параметров
  11. Многофакторная регрессия.
  12. Множественная регрессия и корреляция

Различают 2 класса нелинейных регрессий:

1. регрессии нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам. К этому классу относятся параболы различных порядков и равносторонняя гипербола. Оценки параметров данной функции даются с помощью МНК.

Yx = a+bx+cx2

na+b∑x+c∑ x2 = ∑y

a∑x+b∑ x2 +c∑ x3 =∑yx

a∑ x2 +b∑ x3 +c∑ x4 =∑yx2

Yx = a+b*1/x

n*a+b∑1/x = ∑y

a∑1/x+b∑(1/x)2 = ∑(y*1/x)

 

1. регрессии нелинейные по оцениваемым параметрам:

1. нелинейные модели. Внутренне нелинейные. Логистическая, обратная. к ним МНК не применим, а данные функции невозможно привести к линейному виду путем логарифмирования.

2. нелинейные модели. Внутренне линейные

относятся показательная, степенная и экспоненциальная функции. Для оценки параметров этих функций МНК не применим, а значения параметров находятся путем логарифмирования и приведения к линейному виду. Обратный переход от линейной функции к степенной осуществляется с помощью потенцирования….. уравнения нелинейной регрессии так же дополняются показателями тесноты связи – индекс корреляции. Чем ближе к 1, тем теснее связь между показателями. R2 – индекс детерминации и чаще используется для выбора той или иной нелинейной модели. Оценка надежности уравнения нелинейной регрессии осуществляется с помощью f-критерия Фишера. M – число параметров при переменных х.

Fтабл. Определяется с учетом α и числом степеней свободы V1=m v2=n-m-1. Fрасч>Fтабл – уравнение признается значимым. R2 используется для обоснования возможности применения линейной функции. Если величина….., то предположение о линейной форме связи считается оправданным. Если…., то проводится оценка существенности различий через t-критерий Стьюдента.

Tрасч сравнивается с Tтабл, α=0,05, V=n-m(m-число параметров уравнения).

Tрасч>tтабл – различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна.

Коэффициент эластичности для математических функций

Чтобы иметь представление о качестве модели определяется ошибка аппроксимации. Критерием выбора является min ошибки, а средняя ошибка <=10%


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)