|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Множественная регрессия и корреляция1. Добавление в уравнение множественной регрессии новой объясняющей переменной: а) уменьшает значение коэффициента детерминации; б) увеличивает значение коэффициента детерминации; в) не оказывает никакого влияние на коэффициент детерминации. 2. Скорректированный коэффициент детерминации: а) меньше обычного коэффициента детерминации; б) больше обычного коэффициента детерминации; в) меньше или равен обычному коэффициенту детерминации; 3. С увеличением числа объясняющих переменных скорректированный коэффициент детерминации: а) увеличивается; б) уменьшается; в) не изменяется. 4. Число степеней свободы для остаточной суммы квадратов в линейной модели множественной регрессии равно: а) ; б) ; в) . 5. Число степеней свободы для общей суммы квадратов в линейной модели множественной регрессии равно: а) ; б) ; в) . 6. Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: а) ; б) ; в) . 7. Множественный коэффициент корреляции . Определите, какой процент дисперсии зависимой переменной объясняется влиянием факторов и : а) 90%; б) 81%; в) 19%. 8. Для построения модели линейной множественной регрессии вида необходимое количество наблюдений должно быть не менее: а) 2; б) 7; в) 14. 9. Стандартизованные коэффициенты регрессии : а) позволяют ранжировать факторы по силе их влияния на результат; б) оценивают статистическую значимость факторов; в) являются коэффициентами эластичности. 10. Частные коэффициенты корреляции: а) характеризуют тесноту связи рассматриваемого набора факторов с исследуемым признаком; б) содержат поправку на число степеней свободы и не допускают преувеличения тесноты связи; в) характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании других факторов, включенных в уравнение регрессии. 11. Частный -критерий: а) оценивает значимость уравнения регрессии в целом; б) служит мерой для оценки включения фактора в модель; в) ранжирует факторы по силе их влияния на результат. 12. Несмещенность оценки параметра регрессии, полученной по МНК, означает: а) что она характеризуется наименьшей дисперсией; б) что математическое ожидание остатков равно нулю; в) увеличение ее точности с увеличением объема выборки. 13. Эффективность оценки параметра регрессии, полученной по МНК, означает: а) что она характеризуется наименьшей дисперсией; б) что математическое ожидание остатков равно нулю; в) увеличение ее точности с увеличением объема выборки. 14. Состоятельность оценки параметра регрессии, полученной по МНК, означает: а) что она характеризуется наименьшей дисперсией; б) что математическое ожидание остатков равно нулю; в) увеличение ее точности с увеличением объема выборки. 15. Укажите истинное утверждение: а) скорректированный и обычный коэффициенты множественной детерминации совпадают только в тех случаях, когда обычный коэффициент множественной детерминации равен нулю; б) стандартные ошибки коэффициентов регрессии определяются значениями всех параметров регрессии; в) при наличии гетероскедастичности оценки параметров регрессии становятся смещенными. 16. При наличии гетероскедастичности следует применять: а) обычный МНК; б) обобщенный МНК; в) метод максимального правдоподобия. 17. Фиктивные переменные – это: а) атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки; б) экономические переменные, принимающие количественные значения в некотором интервале; в) значения зависимой переменной за предшествующий период времени. 18. Если качественный фактор имеет три градации, то необходимое число фиктивных переменных: а) 4; б) 3; в) 2. Временные ряды 1. Аддитивная модель временного ряда имеет вид: а) ; б) ; в) . 2. Мультипликативная модель временного ряда имеет вид: а) ; б) ; в) . 3. Коэффициент автокорреляции: а) характеризует тесноту линейной связи текущего и предыдущего уровней ряда; б) характеризует тесноту нелинейной связи текущего и предыдущего уровней ряда; в) характеризует наличие или отсутствие тенденции. 4. Аддитивная модель временного ряда строится, если: а) значения сезонной компоненты предполагаются постоянными для различных циклов; б) амплитуда сезонных колебаний возрастает или уменьшается; в) отсутствует тенденция. 5. Мультипликативная модель временного ряда строится, если: а) значения сезонной компоненты предполагаются постоянными для различных циклов; б) амплитуда сезонных колебаний возрастает или уменьшается; в) отсутствует тенденция. 6. На основе поквартальных данных построена аддитивная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 7 – I квартал, 9 – II квартал и –11 – III квартал. Значение сезонной компоненты за IV квартал есть: а) 5; б) –4; в) –5. 7. На основе поквартальных данных построена мультипликативная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 – I квартал, 1,2 – II квартал и 1,3 – III квартал. Значение сезонной компоненты за IV квартал есть: а) 0,7; б) 1,7; в) 0,9. 8. Критерий Дарбина-Уотсона применяется для: а) определения автокорреляции в остатках; б) определения наличия сезонных колебаний; в) для оценки существенности построенной модели. Приложение B Вопросы к экзамену 1. Определение эконометрики. Эконометрический метод и этапы эконометрического исследования. 2. Парная регрессия. Способы задания уравнения парной регрессии. 3. Линейная модель парной регрессии. Смысл и оценка параметров. 4. Оценка существенности уравнения в целом и отдельных его параметров ( -критерий Фишера и -критерий Стьюдента). 5. Прогноз по линейному уравнению регрессии. Средняя ошибка аппроксимации. 6. Нелинейная регрессия. Классы нелинейных регрессий. 7. Регрессии нелинейные относительно включенных в анализ объясняющих переменных. 8. Регрессии нелинейные по оцениваемым параметрам. 9. Коэффициенты эластичности для разных видов регрессионных моделей. 10. Корреляция и -критерий Фишера для нелинейной регрессии. 11. Отбор факторов при построении уравнения множественной регрессии. 12. Оценка параметров уравнения множественной регрессии. 13. Множественная корреляция. 14. Частные коэффициенты корреляции. 15. -критерий Фишера и частный -критерий Фишера для уравнения множественной регрессии. 16. -критерий Стьюдента для уравнения множественной регрессии. 17. Фиктивные переменные во множественной регрессии. 18. Предпосылки МНК: гомоскедастичность и гетероскедастичность. 19. Предпосылки МНК: автокорреляция остатков. 20. Обобщенный МНК. 21. Общие понятия о системах эконометрических уравнений. 22. Структурная и приведенная формы модели. 23. Проблема идентификации. Необходимое условие идентифицируемости. 24. Проблема идентификации. Достаточное условие идентифицируемости. 25. Методы оценки параметров структурной формы модели. 26. Основные элементы временного ряда. 27. Автокорреляция уровней временного ряда и выявление его структуры. 28. Моделирование сезонных колебаний: аддитивная модель временного ряда. 29. Моделирование сезонных колебаний: мультипликативная модель временного ряда. 30. Критерий Дарбина-Уотсона. Приложение C Варианты индивидуальных заданий Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |