|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Економетрія та її зв'язок з математико-статистичними методами
Сучасні методи управління економічними системами та процесами базуються на широкому використанні математичних методів Математичне моделювання є вираженням процесу математизації наукового економічного знання. Математична модель кожного об’єкта (процесу, явища) містить у собі три групи елементів: 1) характеристику об’єкта, який потрібно визначити (невідомі величини), — вектор Y = (yj); 2) характеристики зовнішніх (щодо модельованого об’єкта) умов, які змінюються, — вектор X = (xj); 3) сукупність внутрішніх параметрів об’єкта — A. Множини умов та параметрів X і A можуть розглядатись як екзогенні величини (тобто такі, які визначаються поза рамками моделі), а величини, що належать вектору Y, — як ендогенні (тобто такі, які визначаються за допомогою моделі). Математичну модель можна тлумачити як особливий перетворювач зовнішніх умов об’єкта X (входу) на характеристики об’єкта Y (виходу), які мають бути знайдені. залежно від способу вираження співвідношень між зовнішніми умовами, внутрішніми параметрами та характеристиками, які мають бути знайдені, математичні моделі поділяються на дві групи: структурні та функціональні. Структурні моделі відбивають внутрішню організацію об’єкта: його складові частини, внутрішні параметри, їх зв’язок з «входом» і «виходом» і т.ін. Розрізняють три види структурних моделей: 1) Yj = fj (A,X); (2.1) 2) Y i (A,X,Y) = 0; (2.2) 3) імітаційні моделі. У моделях першого виду всі невідомі величини подаються у вигляді явних функцій від зовнішніх умов і внутрішніх параметрів об’єкта. У моделях другого виду невідомі визначаються одночасно із системи співвідношень і -го виду рівнянь, нерівностей і т.ін. В імітаційних моделях невідомі величини визначаються також одночасно із вхідними параметрами, але конкретний вигляд співвідношень невідомий. Моделі типу (2.1) — (2.2) — це досить визначені математичні задачі, які можна розв’язати з допомогою чисельних алгоритмів. Модель (2.1) дає аналітичний розв’язок, але можливості побудови таких моделей дуже обмежені. Для розв’язування задачі (2.2), яка не зводиться до задачі (2.1), необхідно мати алгоритм, причому цей алгоритм може не лише застосовуватися для окремих розв’язків, але й виявляти загальні властивості розв’язків, які не залежать від конкретних параметрів задачі. Імітаційні моделі не зводяться до чітко визначених математичних задач, а тому потрібно знаходити особливі способи для одержання розв’язків. Такі моделі виникають при спробах дати математичний опис особливо складних об’єктів (складних систем). Економетричні моделі належать до функціональних моделей. Вони кількісно описують зв’язок між вхідними показниками економічної системи (X) та результативним показником (Y). У загальному вигляді економетричну модель можна записати так: Y = f (X,u), де X — вхідні економічні показники; u — випадкова, або стохастична, складова. Показники X найчастіше можуть бути детермінованими. Адитивна складова u є випадковою змінною, а отже, з огляду на те, що залежна змінна Y залежить від u, вона також є стохастичною. Звідси випливає висновок: економетрична модель є стохастичною. Побудова і дослідження економетричних моделей мають ряд особливостей. Ці особливості пов’язані з тим, що економетричні моделі є стохастичними. Вони кількісно описують кореляційний зв’язок між економічними величинами. Отже, щоб побудувати економетричну модель, необхідно: 1) мати достатньо велику сукупність спостережень вихідних даних; 2) забезпечити однорідність сукупності спостережень; 3) забезпечити точність вихідних даних. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |