АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Скорость распространения гидравлической ударной волны в трубопроводе

Читайте также:
  1. A прямой участок, чистое русло, ровное дно, максимальная скорость течения в центре реки
  2. Алгоритм обратного распространения ошибки
  3. БАЗОВЫЕ УРОВНИ ИЛИ ВОЛНЫ
  4. Борьба за скорость
  5. В15. Умение определять скорость передачи информации
  6. Виды распространения программных средств
  7. Включение двигателей вентиляторов на высокую скорость вращения
  8. Вода как фактор распространения заболеваний неинфекционной природы; гигиеническое нормирование химического состава питьевой воды.
  9. Вращение твердого тела вокруг неподвижной оси. Скорость и ускорения точек тела.
  10. Время, продолжительность и скорость формирования залежей нефти и газа Методы определения времени формирования залежей нефти и газа
  11. Глава 1. Базовые Уровни или Волны
  12. Десятилетий перед началом повышательной волны большого цикла наблюдается

Изменения давления и скорости потока в трубопроводах происходят не мгновенно в связи с упругостью твёрдых стенок трубы и сжимаемостью рабочей среды, а с некоторой конечной скоростью, обусловленной необходимостью компенсации упругих деформаций жидкости и трубы. Рассмотрим случай когда в трубопроводе длиной L и площадью сечения ω под давлением Р находится жидкость, плотность которой ρ. Предположим, что в момент времени t в сечении 1 – 1 давление повысится на величину dp. Это повышение вызывает увеличение плотности на величину dρ, а также расширение внутреннего диаметра трубы. Следовательно, площадь проходного сечения увеличится на величину . В результате увеличится объём W участка трубы на величину dW. За счёт этого произойдет увеличение массы жидкости находящейся в трубе на участке длиной L. Масса увеличится за счёт увеличения, во-первых, плотности жидкости, во-вторых, за счёт увеличения объёма W.

Такая ситуация рассматривалась при выводе уравнения неразрывности потока в дифференциальной форме, с той только разницей, что там рассматривалось лишь изменение массы во времени, без учёта вызвавших это изменение причин . По аналогии с приведённым уравнением запишем выражение, описывающее изменение массы за счёт изменения давления

.

Жидкость под действием указанного повышения давления устремится с некоторой скоростью а в слои с меньшим давлением, в которых также будет повышаться плотность и увеличиваться напряжение в стенках трубопровода, способствующее увеличению площади трубопровода. В связи с этим потребуется некоторое время на распространение этих деформаций вдоль трубопровода.

С другой стороны, перемещение массы dm за время dt происходит под влиянием результирующей Fр сил давления, действующих вдоль линии движения на торцовые поверхности цилиндрического объёма длиной L

В этом случае уравнение импульса силы может быть представлено в следующем виде

.

Отсюда

.

Имея в виду, что , и подставив это в предыдущее выражение, получим

Заметим, что произведение

Приравняем оба выражения для и получим:

.

Выразим из последнего равенства величину a2

Разделим числитель и знаменатель на W, а первое слагаемое в знаменателе искусственно умножим и разделим на ρ:

.

Обратим внимание на то, что а . После подстановки этих равенств в последнее выражение и извлечения корня получим выражение для скорости распространения ударной волны, которая, по сути, является скоростью распространения упругих деформаций жидкости в трубе.

Здесь первое слагаемое под корнем характеризует упругие свойства рабочей среды (жидкости), а – второе упругие силы материала трубы.

Рассмотрим подробнее эти слагаемые.

Как известно из гидростатики, сила, действующая на цилиндрическую поверхность, равна произведению давления на проекцию площади этой поверхности в направлении действия силы. На рассматриваемый участок трубы с толщиной стенок δ, длиной L и диаметром D действует изнутри давление P. Вследствие этого возникает разрывающая сила F, равная

.

В стенках трубы возникает сила сопротивления , равная произведению площади сечения стенок трубы на внутренние напряжения в материале стенок трубы, т.е.

.

Если приравнять две эти силы, получим равенство

,

из которого найдём выражение, определяющее внутреннее напряжение в стенках трубы :

Полагая, что относительное увеличение диаметра трубы, равное , прямо пропорционально напряжению в стенках трубы, можно записать

где Ет - коэффициент пропорциональности, который является модулем упругости материала трубы.

Из двух последних выражений следует, что абсолютное приращение радиуса сечения трубы может быть выражено формулой

Запишем выражение, определяющее увеличение площади сечения трубы:

где ω – начальная площадь сечения трубы,

ωр – площадь сечения трубы при давлении P.

Пренебрегая малой величиной высшего порядка ΔR2 и подставив выражение для ΔR, получим

Продифференцировав это выражение по P и рассматривая ω как функцию, зависящую от P, получим:

В итоге слагаемое, описывающее упругие свойства материала трубы в выражении для скорости распространения ударной волны, можно представить в следующем виде:

Теперь рассмотрим слагаемое, описывающее упругость жидкости . Ранее при рассмотрении свойств жидкости было установлено, что если изменение объёма происходит за счёт изменения плотности, то можно определить коэффициент сжимаемости жидкости βw:

Часто этот коэффициент выражают через обратную величину, называемую модулем упругости жидкости Eж, т. е.:

Отсюда следует, что второе слагаемое, характеризующее упругие свойства рабочей среды, может быть представлено в виде:

Таким образом, окончательно выражение для скорости распространения ударной волны в упругом трубопроводе можно переписать в следующем виде:

где - плотность жидкости,

D - диаметр трубопровода,

- толщина стенки трубопровода,

Ет – объёмный модуль упругости материала трубы,

Еж - объёмный модуль упругости жидкости.

Из формулы следует, что скорость распространения ударной волны зависит от сжимаемости жидкости и упругих деформаций материала трубопровода.

 

5. Ударное давление; Протекание гидравлического удара во времени. Частные случаи интегрирования уравнений Эйлера;

Ударное давление

Для выяснения величины подъёма давления Р применим теорему о сохранении количества движения (импульса силы). Для этого рассмотрим элементарное перемещение участка жидкости длинной dL за время dt. Учтём, что при прямом гидроударе кинетическая энергия ударной волны полностью превращается в потенциальную, т.е. скорость жидкости V становится равной нулю 0.

Импульс силы, под действием которого происходит это движение, равен:

.

Изменение количества движения рассматриваемого объёма длиной dL будет:

,

Повторимся: скорость во второй скобке равна 0, т.к. рассматриваемый объём жидкости останавливается.

Приравнивая эти выражения по теореме о сохранении количества движения, получим:

.

Отсюда выразим величину повышения давления ΔP:

.

После замены дроби скоростью a, окончательно будем иметь:

,

где V - скорость жидкости в трубопроводе до возникновения гидроудара,

- плотность жидкости,

а – скорость распространения ударной волны.

Если в эту формулу подставить выражение описывающее a, то придём к формуле, носящей имя Жуковского:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)