АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Ламинарное движение жидкости

Читайте также:
  1. Автоматизированные системы управления воздушным движением.
  2. Астрология и движение хиппи
  3. Баллистика - раздел механики, изучающий движение тел в поле тяжести Земли.
  4. Безнапорное равномерное движение воды в каналах
  5. Белое движение: идеология и практика.
  6. Виды движения (течения) жидкости
  7. Виды движения (течения) жидкости
  8. Виды движения жидкости. Элементы потока жидкости. Понятие расхода жидкости. Определение скорости осреднённой по живому сечению.
  9. Внутренняя политика Николая I. Общественное движение 20-х – 50-х гг. XIX гг. века.
  10. Выбор рабочей жидкости
  11. Выбор рабочей жидкости
  12. Выдвижение и выборы судей

Касательные напряжения. Рассмотрим правила определения величины касательныхнапряжений на примере потока жидкости в круглой цилиндрической трубе. Двумя сечения­ми выделим в потоке жидкости отсек длиной l.

На данный отсек жидкости будут действовать силы давления, приложенные к площадям жи­ вых сечений потока жидкости слева и справа и сила трения, направленная в сторону обратную движению жидкости. Поскольку движение жидкости установившееся, то все действующие на отсек жидкости силы должны быть уравновешены.

 

где: r0 - касательные напряжения на боковой поверхности отсека жидкости.

Касательные напряжения на периферии отсека жидкости (у стенки трубы) будут равны:

Очевидно, это будут максимальная величина касательных напряжений в отсеке жид­кости. Вычислим величину касательных напряжений на расстоянии r от оси трубы.

Таким образом, касательные напряжения по сечению трубы изменяются по линей­ному закону; в центре потока (на оси трубы) г=0 касательные напряжения т= 0.

Распределение скоростей в ламинарном потоке. Поскольку ламинарный поток жид­кости в круглой цилиндрической трубе является осе симметричным, рассмотрим, как и ранее, лишь одно (вертикальное сечение трубы). Тогда, согласно гипотезе Ньютона:

 
 
τmax


 

 
 
τ=0

 


 

Отсюда видно, что распределение скоростей в круглой цилиндрической трубе соот­ветствует параболическому закону. Максимальная величина скорости будет в центре тру­бы, где r = 0

Структура турбулентного потока. Отличи­тельной особенностью турбулентного движения жидкости является хаотическое движение час­тиц в потоке. Однако при этом часто можно на блюдать и некоторую закономерность в таком движении. С помощью термогидрометра, прибора позволяющего фиксировать изменение скорости в точке замера, можно снять кривую скорости. Если выбрать интервал времени достаточной продолжительности, то окажется, что колебания скорости наблюдаются око­ло некоторого уровня и этот уровень сохраняется постоянным при выборе различных ин­тервалов времени. Величина скорости в данной точке в данный момент времени носит на­звание мгновенной скорости. График изменения мгновенной скорости во времени u(t) представлена на рисунке. Если выбрать на кривой скоростей некоторый интервал времени и провести интегрирование кривой скоростей, а затем найти среднюю величину, то такая величина носит название осреднённой скорости

Разница между мнгновенной и осреднённой скоростью называется скоростью пуль­сации u'.

Если величины осреднённых скоростей в различные интервалы времени будут оставаться постоянными, то такое турбулентное движение жидкости будет устано­вившемся.

При неустановившемся турбулентном движении жидкости величины щсреднённых скоростей меняются во времени

Пульсация жидкости является причиной перемешивания жидкости в потоке. Интен­сивность перемешивания зависит, как известно, от числа Рейнольдса, т.е. при сохранении прочих условий от скорости движения жидкости. Таким образом, в конкретном потоке жидкости (вязкость жидкости и размеры сечения определены первичными условиями) характер её движения зависит от скоро­сти. Для турбулентного потока это имеет решающее значение. Так в периферийных слоях жидкости скорости всегда будут ми­нимальными, и режим движения в этих слоях есте

 

 

твенно будет ламинарным. Увеличение скорости до критического значения приведёт к смене режима движения жидкости с ламинарного ре­жима на турбулентный режим. Т.е. в реальном потоке присутствуют оба режима как ла­минарный, так и турбулентный.

Таким образом, поток жидкости состоит из ламинарной зоны (у стенки канала) и турбулентного ядра течения (в центре) и, поскольку скорость к центру турбулентного потока нарастает интенсивно, то толщина периферийного ламинарного слоя чаще всего не­значительна, и, естественно, сам слой называется ламинарной плёнкой, толщина которой δ зависит от скорости движения жидкости.

Касательные напряжения в турбулентном потоке. В турбулентном потоке величина касательных напряжений должна быть больше, чем в ламинарном, т.к. к касательным на­пряжениям, определяемым при перемещении вязкой жидкости вдоль трубы следует доба­вить дополнительные касательные напряжения, вызываемые перемешиванием жидкости.

Теоретически полное касательное напряжение должно быть равно:

но первое слагаемое в правой части равенства мало по сравнению со вторым и его величиной можно пренебречь

Распределение скоростей по сечению турбулентного потока. Наблюдения за величи­нами осреднённых скоростей в турбулентном потоке жидкости показали, что эпюра осреднённых скоростей в турбулентном потоке в значительной степени сгла­жена и практически скорости в разных точках живого сечения равны средней скорости. Сопоставляя эпюры скоростей турбулентного потока (эпюра 1) и ламинар­ного потока позволяют сделать вывод о практически равномерном распределении скоро­стей в живом сечении. Работами Прандтля было установлено, что закон изменения каса­тельных напряжений по сечению потока близок к логарифмическому закону. При некото­рых допущениях: течение вдоль бесконечной плоскости и равенстве касательных напря­жений во всех точках на поверхности

После интегрирования:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)