|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Химическая кинетикаПример 1. При взаимодействии кристаллов хлорида фосфора (V) с парами воды образуется жидкий РОС13 и хлороводород. Реакция сопровождается выделением 111,4 кДж теплоты. Напишите термохимическое уравнение этой реакции. Решение. Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Qp, равные изменению энтальпии системы ∆Н. Значение ∆Н приводят обычно в правой части уравнения, отделяя его запятой или точкой с запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г — газообразное, ж — жидкое, к — кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно. Если в результате реакции выделяется теплота, то ∆Н < 0. Считывая сказанное, составляем термохимическое уравнение данной в примере реакции: РС15(к) + Н2О(г) = РОСl 3(ж) + 2НС1(г); ∆Нхр = -111,4 кДж Таблица 3 Стандартные теплоты (энтальпии) образования некоторых веществ
Пример 2. Реакция горения этана выражается термохимическим уравнением С2Н6(г) + 3 ½ О2 = 2 СО2(г) + 3 Н2О(ж); Нхр = -1559,87 кДж. Вычислите теплоту образования этана, если известны теплоты образования СО2(г) и Н2О(ж) (см. табл. 5). Решение. Теплотой образования (энтальпией) данного соединения называют тепловой эффект реакции образования 1 моль этого соединения из простых веществ, взятых в их устойчивом состоянии при данных условиях. Обычно теплоту образования относят к стандартному состоянию, т.е. 25 оС (298 К) и 1,013∙105 Па и обозначают через ∆Н . Так как тепловой эффект с температурой изменяется незначительно, то в дальнейшем индексы опускаются и тепловой эффект обозначается через ∆Н. Следовательно, нужно вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид 2С (графит) + ЗН2(г) - С2Н6(г); ∆Н=? исходя из следующих данных: а) С2Н6(г) + 3'/2О2(г) = 2СО2(г) + ЗН2О(ж); ∆Н= -1559,87 кДж; б) С (графит) + О2(г) = СО2(г); ∆Н = -393,51 кДж; в) Н2(г) + ½ O2 = Н2О(ж); ∆Н = - 285,84 кДж. На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) — на 3, а затем сумму этих уравнений вычислить из уравнения (а): С2Н6 + 372О2 - 2C - 2О2-ЗН2 -3/2О2 = 2СО2 + ЗН2О -2СО2 - ЗН2О ∆Н = -1559,87 -2(-393,51)-3(-285,84) = +84,67 кДж; ∆Н = -1559,87 + 787,02 + 857,52; С2Н6 = 2С + ЗН2; ∆Н= + 84,67 кДж. Так как теплота образования равна теплоте разложения с обратным знаком, то ∆Н (г) = -84,67 кДж. К тому же результату придем, если для решения задачи применить вывод из закона Гесса: ∆Нх р = 2∆НСО2 + З∆НН2О - ∆НС2н6 - 3 ½ ∆НО2 Учитывая, что теплоты образования простых веществ условно приняты равными нулю ∆Нс2н6 = 2∆НСО + З∆НН О - ∆Нх р ∆Нс2н6 = 2(-393,51) + 3(-285,84) + 1559,87 = -84,67; то ∆Н (г) = -84,67 кДж Пример 3. Реакция горения этилового спирта выражается термохимическим уравнением С2Н5ОН(ж) + ЗО2(г) = 2СО2(г) + ЗН2О(ж); ∆Н=? Вычислите тепловой эффект реакции, если известно, что молярная теплота парообразования С2Н5ОН(ж) равна +42,36 кДж, а теплоты образования С2Н5ОН(г), СО2(г), Н2О(ж) см. табл. 5. Решение. Для определения ∆Н реакции необходимо знать теплоту образования С2Н5ОН(ж). Последнюю находим из данных: С2Н5ОН(ж) = С2Н5ОН(г); ∆Н= +42,36 кДж +42,36=-235,31-∆НС2Н5ОН (ж); ∆НС2Н5ОН (ж) = -235,31 - 42,36 = -277,67 кДж. Вычисляем реакции, применяя следствия из закона Гесса: ∆Нхр = 2(-393,51) + 3(-285,84) + 277,67 = -1366,87 кДж. Пример 4. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном? Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре. Пример 5. Прямая или обратная реакция будет протекать при стандартных условиях в системе СН4(г) + СО2 2СО(г) + 2Н2(г) Решение. Вычислим ∆G0298 прямой реакции. Значения ∆G0298 соответствующих веществ приведены в таблице 4. Зная, что ∆G есть функция состояния и что ∆G для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим ∆G0298 процесса: ∆G0298 = 2(-137,27) + 2(0) - (-50,79 - 394,38) = + 170,63 кДж. То что ∆G0298 > 0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298К и давлении взятых газов, равном 1,013 ∙105 Па (760 мм рт. ст. = 1 атм). Таблица 4 Стандартная энергия Гиббса образования некоторых веществ
Таблица 5 Стандартные абсолютные энтропии некоторых веществ
Пример 6. На основании стандартных теплот образования (см. табл. 3) и абсолютных стандартных энтропии веществ (табл. 5) вычислите ∆S0298 реакции, протекающей по уравнению СО(г) + Н2О(ж) = СО2(г) + Н2(г) Решение. ∆G0 = ∆Н - Т∆S0; ∆Н и ∆S — функции состояния, поэтому ∆Н 0х.р. = (-393,51+0) – (-110,52-285,84) = +2,85 кДж ∆S 0х.р. =(213.65 + 130.59) – (197.91 + 69.94) = +79.39 = 0.07639кДж/(моль∙К) ∆G0 = +2,85 – 298 ∙ 0,07639 = - 19,91 кДж. Пример 7. Реакция восстановления Fe2O3 водородом протекает по уравнению Fe2O3(к)+ 3H2(г) = 2Fe(к) + ЗН2О(г); ∆Н= +96,61 кДж Возможна ли эта реакция при стандартных условиях, если изменение энтропии ∆S = 0,1387 кДж/(моль∙К)? При какой температуре начнется восстановление Fe2О3? Решение. Вычисляем ∆G0 реакции: ∆G =∆H-T∆S = 96,61 -298 ∙ 0,1387 = +55,28 кДж. Так как ∆G > 0, то реакция при стандартных условиях невозможна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой ∆G =0: ∆Н = Т∆S; Следовательно, при температуре ≈ 696,5К начнется реакция восстановления Fe2O3. Иногда эту температуру называют температурой начала реакции. Пример 8. Вычислите ∆Н°, ∆S и ∆G0т реакции, протекающей по уравнению Fe2O3(к) + ЗС = 2Fe + ЗСО. Возможна ли реакция восстановления Fe2O3 углеродом при 500 и 1000 К? Решение. ∆Н 0х.р. и ∆S 0х.р. находим из соотношений (1) и (2): ∆Н = [3(-110.52)+2∙0]-[-822.10+3∙0] Энергию Гиббса при соответствующих температурах находим из соотношения ∆G500= 490,54 -500 = +219,99кДж ∆G1000 = 490,54 - 1000 = -50.56кДж Так как ∆G500 >0, а ∆G1000 <0, то восстановление Fe2O3 возможно при 1000 К и невозможно при 500К. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.) |