|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Гормоны стероидной природы: глюкокортикоиды, половые гормоны, минералокортикоиды. Химическая структура гормонов, механизм действия, влияние на обмен веществПри добавлении АТФ к гомогенату мышечной ткани снизилась скорость гликолиза, концентрация глюкозо-6-фосфата и фруктозо-6-фосфата увеличилась, а концентрация всех других метаболитов гликолиза была при этом ниже. Укажите фермент, активность которого снижается при добавлении АТФ. Напишите реакцию, катализируемую этим ферментом. 1. Матричные биосинтезы. При биосинтезе белков и нуклеиновых кислот матрицей служат нуклеиновые кислоты. Матрица в ходе матричного синтеза не расходуется и может использоваться многократно. Существует три основных типа матричных биосинтезов. Биосинтез ДНК (репликация ДНК) с использованием в качестве матрицы уже существующих молекул ДНК. Биосинтез РНК на матрице ДНК (транскрипция). Биосинтез белков с использованием в качестве матрицы и-РНК (трансляция). Трансляция – синтез белка на матрице РНК. ДНК – код АТГ, и-РНК – кодон УАУ, т –РНК – антикодон АУГ. Этапы трансляции - инициация, элонгация, терминация. Инициация. Инициирующий кодон – АУГ. Рост цепей идёт с N-конца. Синтез начинается с N-формилметионина. Необходимые компоненты: рибосомы, инициирующий кодон, инициаторная аминоацил-тРНК, факторы инициации (IF1, IF2, IF3), ГТФ, ионы магния. Процесс формилирования предотвращает участие аминогруппы АМК в образовании пептидной связи и обеспечивает синтез белка в направлении от аминогруппы к карбоксильной. IF3 первым связывается с малой субъединицей рибосомы. IF3 обеспечивает узнавание участка на м-РНК, куда присоединяется формилметионин-тРНК. IF1 способствует связыванию формилметионин-тРНК с малой субъединицей рибосомы и присоединению к ней м-РНК. IF2 способствует объединению большой и малой субчастиц. Образование инициаторного комплекса осуществляется путём присоединения белковых факторов, формилметионин-тРНК, ГТФ к малой субчастице рибосомы, к которой комплементарно антикодону присоединяется м-РНК, при участии кодона АУГ. После присоединения 50S субчастицы рибосома становится функционально активной. Элонгация трансляции. Необходимо: т-РНК, АМК, ГТФ, ионы магния, рибосомы, факторы элонгации, м-РНК. Формилметионин-тРНК поступает сначала на А-центр, а потом на Р-центр. Участок А получает другую АМК. Для этого необходим ГТФ. Рибосома делает «шаг» по м-РНК на один кодон. Формилметионин переходит на А-участок с Р-участка. На А-участке происходит синтез пептидной связи под влиянием пептидилтрансферазы. Рибосома перемещается на один кодон. Дипептид вновь переносится на Р-участок под влиянием пептидилтранслоказы. На А-участок поступает третья АМК. При перебросе в участок А дипептида образуется трипептид. Главное событие транслокации – перемещение пептидил-тРНК из А в Р-участок рибосомы. Антикодон тянет за собой кодон матрицы, приводя к перемещению матрицы на один триплет относительно рибосомы. Для синтеза одной пептидной связи нужно 4АТФ: 2 АТФ - на активацию АМК и 2 ГТФ - на включение АМК т-РНК в А-центр и транслокацию. Терминация. Необходимы: рибосомы, факторы терминации (3), м-РНК, терминирующие кодоны УАГ, УАА, УГА. От рибосомы отделяется белок, т-РНК, м-РНК. м-РНК распадается до рибонуклеотидов. Синтез митохондриальных белков. 2% клеточной ДНК находится в митохондриях. Белки, синтезируемые в митохондриях, нерастворимы и участвуют в организации структуры митохондрий. Посттрансляционная модификация - формирование третичной и четвертичной структур – фолдинг (участвуют шапероны), ограниченный протеолиз. присоединение коферментов, простетической группы, гликозилирование, метилирование, гидроксилирование, фосфорилирование, Ингибиторы белкового синтеза. 50% антибиотиков являются ингибиторами белкового синтеза, 20% - антибиотиков ингибиторы синтеза нуклеиновых кислот. Репликацию нарушают антибиотики, химические яды, вирусы.
2. Гормоны стероидной природы. Гормоны коры надпочечников. Кора надпочечников – жизненно важный орган. В коре синтезируется свыше 50 кортикостероидов, 7 – 10 из них - гормоны: глюкокортикоиды, минералокортикоиды, половые гормоны. Синтез гормонов. Кортикостероиды синтезируются из холестерина. Холестерин превращается в прегненолон, который является предшественником всех стероидных гормонов. Регуляция синтеза кортикостероидов – кортиколиберин гипоталамуса →АКТГ гипофиза →кортикостероиды→транспортируются в клетку. Рецепторы кортикостероидов в цитоплазме клетки. Гормоны соединяются с белком и транспортируются в ядро. В ядре кортикостероиды связываются с хроматином и действуют на геном, изменяя транскрипцию генов. Гормон→ген→белок. Глюкокортикоиды - кортикостерон, кортизон, гидрокортизон, 11-дезоксикортизол, 11-дегидрокортикостерон. Глюкокортикоиды состоят из 21 углеродного атома и имеют боковую цепь у 17 атома углерода. 75-80 % глюкокортикоидов связаны с транскортином. 10-15 % - с альбумином. Синтез глюкокортикоидов Органы-мишени для глюкокортикоидов - соединительная ткань, мышцы, жировая ткань, лимфоидная ткань, печень, почки. Влияние глюкокортикоидов на белковый обмен. Глюкокортикоиды являются катаболиками в мышечной, лимфоидной, соединительной, жировой тканях. Снижают проницаемость клеток этих тканей для аминокислот и глюкозы, способствуют гипераминоацидурии, повышают выделение общего азота с мочой. В печени глюкокортикоиды – анаболики. Влияние глюкокортикоидов на углеводный обмен: усиливают глюконеогенез из АМК, ингибируют ГК, снижают синтез гликогена в мышцах, активируют гликогенолиз. На жировой обмен: стимулируют липолиз, активируя липазы, повышают содержание жирных кислот в крови. Из-за того, что жирные кислоты не успевают сгорать, развивается кетонемия и стероидный диабет. Глюкокортикоиды: влияют на терморегуляционный центр, снижают синтез АТФ и адениловых нуклеотидов, оказывают противоаллергическое действие (угнетение образования иммуноглобулинов), оказывают противовоспалительное действие: уменьшают проницаемость капилляров, ослабляют фагоцитарную активность лимфоцитов. Глюкокортикоиды действуют: на кровь: снижают число лимфоцитов, снижают число эозинофилов, повышают число нейтрофилов. На соединительную ткань: снижают образование гликозаминогликанов, тормозят рост фибробластов, уменьшают число тучных клеток. Применение. В клинике глюкокортикоиды применяют как десенсибилизаторы, противовоспалительные, иммунодепрессанты. Используют при коллагенозах, бронхиальной астме. Минералокортикоиды - дезоксикортикостерон, альдостерон: 1) Действует на канальцевый аппарат почек: снижает реабсорбцию калия (нарушение сократительной способности мышц), повышает реабсорбцию натрия и хлора из первичной мочи повышается осмотическое давление крови, лимфы, тканевой жидкости повышается обратное всасывание воды в кровь. 2) Усиливает воспаление. Биологическая роль альдостерона. Катаболизм гормонов: 17-кетостероиды – конечные метаболиты гормонов - выводятся с мочой. У мужчин 10-25 мг в сутки. У женщин 5-15 мг в сутки. Выделение увеличивается при: опухоли коры надпочечников и семенников, аддисоновой болезни, микседеме. Гиперкортицизм. Возникает при: опухоли коры надпочечников, поражении гипоталамо- гипофизарной системы (избыток либерина). Проявляется повышенной секрецией всех кортикостероидов, либо одной группы гормонов. Болезнь Иценко - Кушинга возникает при избытке кортизола. При этом заболевании: «буйволовый» тип телосложения, повреждается миокард, снижается иммунитет, стероидный диабет, гипергликемия, гипертония. Синдром Конна возникает при избыточном выделении альдостерона. При этом заболевании: задержка натрия, хлора и воды в организме, теряется калий, отёки, гипертония, слабость, повышается возбудимость миокарда. Гиперплазия коры надпочечников. Гормонально активные опухоли коры надпочечников: кортикостерома, андростерома, кортикоэстрома, альдостерома, смешаннные опухоли. При опухоли, продуцирующей мужские половые гормоны в моче много 17-кетостероидов, появляются усы и борода у женщин. Гипокортицизм, Бронзовая болезнь (болезнь Аддисона). Причины: аутоиммунные поражения клеток коры надпочечников, туберкулёз, сифилис. Клинические проявления: слабость, гипотония, гипогликемия, снижение концентрации натрия и хлора, повышение концентрации калия, пигментация кожи (кортикостерон связан с МСГ), снижается сопротивляемость к стрессам, инфекциям, снижается возбудимость миокарда. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |