|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Движущейся жидкостиВ системе из трех дифференциальных уравнений движения идеальной жидкости (56) содержится четыре неизвестных параметра движения ; ; ; . Для того, чтобы определить эти параметры, необходимо четвертое уравнение. Таким уравнением является дифференциальное уравнение неразрывности. Выделим в движущейся идеальной жидкости параллелепипед (рис. 25) со сторонами ; ; , представляющий собой неподвижную часть пространства, заполненного движущейся жидкостью. Будем считать, что движение жидкости происходит без образования пустот и переуплотнений, т.е. с постоянной плотностью. В точке А в момент времени скорость движения будет , а ее проекции на координатные оси - .
Рис. 25.
Так как скорости движения частиц изменяются с изменением их положения в пространстве, то в тот же момент времени скорость в точке В , отстоящей от точки А на расстоянии будет равна . Частная производная в градиенте давления принята потому, что при переходе частицы из точки А в точку В меняется только координата . Таким образом, за время через грань АСДЕ параллелепипеда будет втекать жидкость массой
а через грань ВС 1 Д 1 Е 1 вытекать
.
Следовательно, за время изменение массы жидкости в параллелепипеде в результате движения через грани, нормальные к оси будет равно
.
Изменения массы жидкости через грани нормальные к осям и соответственно будут равны ;
.
Так как форма параллелепипеда остается неизменной, а движение жидкости происходит без образования пустот и переуплотнений, общая сумма изменений массы внутри параллелепипеда будет равна нулю, т.е.
или после сокращения:
(59)
Физический смысл уравнения (59) состоит в том, что сумма изменений проекций скоростей в направлении соответствующих координатных осей равна нулю. Это значит, что объем несжимаемой жидкости, которая втекает в параллелепипед, равна объему жидкости, вытекающему из него.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |