АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Движущейся жидкости

Читайте также:
  1. Виды движения (течения) жидкости
  2. Виды движения (течения) жидкости
  3. Виды движения жидкости. Элементы потока жидкости. Понятие расхода жидкости. Определение скорости осреднённой по живому сечению.
  4. Выбор рабочей жидкости
  5. Выбор рабочей жидкости
  6. Гидравлические характеристики потока жидкости
  7. Гидродинамика. Понятие о местной мгновенной и осредненной скорости. Виды движения жидкости
  8. Давление в покоящейся жидкости
  9. Давление жидкости на криволинейную поверхность
  10. Давление жидкости на наклонную поверхность
  11. Давление жидкости на плоскую наклонную стенку
  12. Давление жидкости на плоскую стенку

В системе из трех дифференциальных уравнений движения идеальной жидкости (56) содержится четыре неизвестных параметра движения ; ; ; . Для того, чтобы определить эти параметры, необходимо четвертое уравнение. Таким уравнением является дифференциальное уравнение неразрывности.

Выделим в движущейся идеальной жидкости параллелепипед (рис. 25) со сторонами ; ; , представляющий собой неподвижную часть пространства, заполненного движущейся жидкостью. Будем считать, что движение жидкости происходит без образования пустот и переуплотнений, т.е. с постоянной плотностью.

В точке А в момент времени скорость движения будет , а ее проекции на координатные оси - .

 

Рис. 25.

 

Так как скорости движения частиц изменяются с изменением их положения в пространстве, то в тот же момент времени скорость в точке В , отстоящей от точки А на расстоянии будет равна . Частная производная в градиенте давления принята потому, что при переходе частицы из точки А в точку В меняется только координата .

Таким образом, за время через грань АСДЕ параллелепипеда будет втекать жидкость массой

 

 

а через грань ВС 1 Д 1 Е 1 вытекать

 

.

 

Следовательно, за время изменение массы жидкости в параллелепипеде в результате движения через грани, нормальные к оси будет равно

 

.

 

Изменения массы жидкости через грани нормальные к осям и соответственно будут равны

;

 

.

 

Так как форма параллелепипеда остается неизменной, а движение жидкости происходит без образования пустот и переуплотнений, общая сумма изменений массы внутри параллелепипеда будет равна нулю, т.е.

 

 

или после сокращения:

 

(59)

 

Физический смысл уравнения (59) состоит в том, что сумма изменений проекций скоростей в направлении соответствующих координатных осей равна нулю. Это значит, что объем несжимаемой жидкости, которая втекает в параллелепипед, равна объему жидкости, вытекающему из него.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)