|
|||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Классификация потерь напораОдним из важнейших вопросов гидромеханики является определение потерь энергии при движении жидкости. При движении жидкости по трубопроводам возникают потери энергии, которые зависят от длины трубопроводов (пропорциональные длине канала) и потери энергии в местных сопротивлениях – запорная арматура, повороты, расширения и сужения трубопроводов – вызываемые изменениями скорости потока либо по величине, либо по направлению. Потери энергии потока как на преодоление сопротивлений по длине трубопроводов, так и на преодоление местных сопротивлений, в конечном счете, обусловлены вязкостью жидкости, а, следовательно, теряемая механическая энергия рассеивается и переходит в тепловую. Важность определения потерь напора (или потерь давления ) связана с необходимостью расчета затрат энергии, требуемых для компенсации этих потерь при перемешивании жидкостей, например, с помощью насосов, компрессоров и т.д. Потерянный напор является суммой двух слагаемых:
(98)
где , - потери напора вследствие трения и местных сопротивлений, соответственно.
Для вычисления потерь напора при турбулентном режиме обычно пользуются частными эмпирическими формулами
(99)
и
(100)
Средняя скорость, входящая в формулы (99) и (100) – эта такая, одинаковая для всех точек сечения скорость, при которой за единицу времени через данное сечение проходит тот же расход жидкости, что и при действительном распределении скоростей по сечению потока. Среднюю скорость определяют по уравнению расхода
(101)
Из формул (99) и (100) следует, что потери энергии на трение и местные сопротивления пропорциональны скоростному и динамическому напору (), который является мерой кинетической энергии потока, отнесенной к единице объема жидкости. В действительности эта зависимость значительно сложнее, так как коэффициент трения и коэффициент местного сопротивления не являются постоянными величинами, а существенно зависят от скорости течения жидкости, ее плотности и вязкости, а также диаметра и шероховатости трубы, по которой движется поток. Величина коэффициента трения проявляется по-разному при различных режимах движения потока в трубе. В одном диапазоне чисел Рейнольдса, характеризующих режим движения, на величину влияет в большей степени скорость, в другом диапазоне преобладающее влияние оказывают геометрические характеристики – диаметр и шероховатость трубы (высота выступов шероховатости ). В связи с этим различают четыре области сопротивления, в которых изменение имеет свою закономерность. Первая область – область ламинарного потока, ограниченная значениями , в которой зависит от и не зависит от величины , определяется по формуле Пуазейля
. (102)
При этом значении потери напора по длине трубы пропорциональны скорости в первой степени. Все остальные области сопротивления находятся в зоне турбулентного режима с различной степенью турбулентности. Вторая область – гидравлически гладкие трубы. Поток в трубе при этом турбулентный, но у стенок трубы сохраняется слой жидкости, в пределах которого движение остается ламинарным. Трубы считаются гидравлически гладкими, если толщина ламинарного слоя больше высоты выступов шероховатости . В этом случае ламинарный слой покрывает неровности стенок трубы и последние не оказывают тормозящего влияния на основное турбулентное ядро потока. Границу зоны гидравлически гладких труб можно определить из зависимости:
(103)
Для гидравлически гладких труб, т.е при условии коэффициент может быть определен по формуле:
, (104)
которая применима при значениях чисел Рейнольдса . Третья область – переходная от области гидравлически гладких труб к квадратичной области. В этой области толщина ламинарного слоя равна или меньше выступов шероховатости , которые в этом случае выступают как препятствие у стенок, увеличивая турбулентность, а, следовательно, и сопротивление в потоке. Для определения в переходной области сопротивления применима формула
(105)
Потери напора по длине трубы в переходной области сопротивления пропорциональны скорости в степени от до . Четвертая область – гидравлически шероховатых труб или квадратичного сопротивления (автомодельная область). Основное влияние на сопротивление потоку оказывает шероховатость стенок трубы. Чем больше выступы шероховатости , тем большую турбулентность они вызывают, тем больше будут затраты энергии в потоке на преодоление сопротивлений. В квадратичной области сопротивления коэффициент не зависит от скорости, а становится функцией только относительной шероховатости , выражаемой отношением абсолютной шероховатости к диаметру трубы
(106)
Для автомодельной области в уравнении (105) можно пренебречь вторым слагаемым в квадратных скобках, и оно принимает вид
. (107)
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |