|
|||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Классификация потерь напораОдним из важнейших вопросов гидромеханики является определение потерь энергии при движении жидкости. При движении жидкости по трубопроводам возникают потери энергии, которые зависят от длины трубопроводов (пропорциональные длине канала) и потери энергии в местных сопротивлениях – запорная арматура, повороты, расширения и сужения трубопроводов – вызываемые изменениями скорости потока либо по величине, либо по направлению. Потери энергии потока как на преодоление сопротивлений по длине трубопроводов, так и на преодоление местных сопротивлений, в конечном счете, обусловлены вязкостью жидкости, а, следовательно, теряемая механическая энергия рассеивается и переходит в тепловую. Важность определения потерь напора Потерянный напор является суммой двух слагаемых:
где
Для вычисления потерь напора при турбулентном режиме обычно пользуются частными эмпирическими формулами
и
Средняя скорость, входящая в формулы (99) и (100) – эта такая, одинаковая для всех точек сечения скорость, при которой за единицу времени через данное сечение проходит тот же расход жидкости, что и при действительном распределении скоростей по сечению потока. Среднюю скорость определяют по уравнению расхода
Из формул (99) и (100) следует, что потери энергии на трение и местные сопротивления пропорциональны скоростному и динамическому напору ( В действительности эта зависимость значительно сложнее, так как коэффициент трения и коэффициент местного сопротивления не являются постоянными величинами, а существенно зависят от скорости течения жидкости, ее плотности и вязкости, а также диаметра и шероховатости трубы, по которой движется поток. Величина коэффициента трения проявляется по-разному при различных режимах движения потока в трубе. В одном диапазоне чисел Рейнольдса, характеризующих режим движения, на величину В связи с этим различают четыре области сопротивления, в которых изменение Первая область – область ламинарного потока, ограниченная значениями
При этом значении Вторая область – гидравлически гладкие трубы. Поток в трубе при этом турбулентный, но у стенок трубы сохраняется слой жидкости, в пределах которого движение остается ламинарным. Трубы считаются гидравлически гладкими, если толщина ламинарного слоя Границу зоны гидравлически гладких труб можно определить из зависимости:
Для гидравлически гладких труб, т.е при условии
которая применима при значениях чисел Рейнольдса Третья область – переходная от области гидравлически гладких труб к квадратичной области. В этой области толщина ламинарного слоя Для определения
Потери напора по длине трубы в переходной области сопротивления пропорциональны скорости в степени от Четвертая область – гидравлически шероховатых труб или квадратичного сопротивления (автомодельная область). Основное влияние на сопротивление потоку оказывает шероховатость стенок трубы. Чем больше выступы шероховатости В квадратичной области сопротивления коэффициент
Для автомодельной области в уравнении (105) можно пренебречь вторым слагаемым в квадратных скобках, и оно принимает вид
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |