АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Реальной жидкости

Читайте также:
  1. Виды движения жидкости. Элементы потока жидкости. Понятие расхода жидкости. Определение скорости осреднённой по живому сечению.
  2. Изменение реальной процентной ставки.
  3. Исследование плевральной жидкости.
  4. Ламинарное и турбулентное движение жидкости. Опыт Рейнольдса.
  5. Механич хр-ки жидкости. (сжимаемость, вязкость, поверхн натяжение, темпер расшир, капилярность, испаряемость, растворимость газов).
  6. Модель идеальной жидкости. Гидростатика, силы, действующие на жидкость. Давление в жидкости.
  7. Общественные потребности в реальной жизни
  8. Понятие о неньютоновских жидкостях, свойства и классификация. Вязко-пластичные жидкости. Напряжение сдвига. Закон внутреннего трения.
  9. Растворение газов в жидкости. Идеальный и реальный газы. Уравнения состояния для идеального и реального газов.
  10. Режимы движения жидкости.
  11. Режимы движения жидкости. Опыты Рейнольдса

Энергетический баланс потока жидкости определяется уравнением Даниила Бернулли, впервые выведенным им в 1738 г. для элементарной струйки идеальной жидкости (т.е. не имеющей вязкости) при установившемся движении.

В последующем на основании работ как Д.Бернулли, так и других ученых (Л. Эйлера, Г. Кориолиса, Ж. Буссинеска и др.), это уравнение было сформировано для целого потока реальной жидкости, однако в истории науки оно известно как уравнение Даниила Бернулли. Для составления энергетического баланса рассмотрим поток, проходящий по трубопроводу переменного сечения от живого сечения к живому сечению (рис. 29).

Рис. 29. Графическое изображение уравнения Д. Бернулли для потока реальной жидкости при установившемся движении:

1 - поток; 2 - пьезометр; 3 - трубка Пито; 4 - линия полной энергии;

- плоскость сравнения.

 

Рассмотрим полную удельную энергию в сечениях относительно плоскости сравнения с учетом ранее полученного уравнения (69):

Полная удельная энергия потока в сечении :

 

(70)

Полная удельная энергия потока в сечении :

 

, (71)

 

Показания пьезометров и скоростных трубок, установленных в сечениях и , демонстрируют, что .

Это вызвано тем, что часть энергии потока расходуется на преодоление гидравлических сопротивлений при движении жидкости от одного сечения к другому.

Величина называется удельной потерей энергии (или потерей напора) и обозначается . Отсюда на основании закона сохранения энергии запишем следующее уравнение

 

(72)

 

Полученное выражение и называется уравнением Бернулли для потока реальной жидкости.

Влияние вязкости жидкости приводит к неравномерному распределению скоростей в поперечном сечении потока (трубопровода). Поэтому уравнение (72) перепишется в следующем виде:

 

, (73)

 

где - коэффициент, характеризующий неравномерность распределения скоростей (коэффициент Кориолиса).

 

При равномерном движении воды в трубах и каналах небольшого поперечного сечения коэффициент Кориолиса принимается равным 1,05….1,1. В большинстве случаев при практических расчетах полагают .

Каждая составляющая уравнения Бернулли имеет геометрический и энергетический смысл.

Все члены уравнения (73) имеют линейную размерность, и каждый из них может называться высотой:

 

- геометрическая высота, или высота положения,
- пьезометрическая высота;
- высота скоростного напора;
- высота потерь напора.

 

Сформулируем геометрический смысл уравнения Бернулли для потока реальной жидкости.

 

При установившемся потоке реальной жидкости сумма четырех высот (высота положения, пьезометрическая высота, высота скоростного напора и высота потерь напора) есть величина постоянная для любого сечения потока.

Энергетический смысл уравнения Бернулли заключается в следующем: при установившемся потоке реальной жидкости сумма четырех удельных энергий (энергии положения, энергии давления, кинетической энергии и энергии потерь) остается неизменной для любого сечения потока.

Уравнение Бернулли является основным уравнение гидродинамики, с помощью которого выводятся расчетные формулы для различных случаев движения жидкости, и решается большое количество практических задач равномерного движения жидкости в трубах и открытых руслах.

Для решения этих задач используют два основных уравнения гидродинамики:

1) уравнение Бернулли

 

, (74)

 

2) уравнение неразрывности потока

 

, (75)

 

При решении задач обычно по длине потока выбирают два характерных поперечных сечения ( и ). Горизонтальная плоскость сравнения , как правило, выбирается по оси трубопровода. При этом сечения выбираются с таким расчетом, чтобы для одного из них были известны величины , и , а для другого – одна или две из них были неизвестны и подлежали определению.

Взаимосвязь между тремя параметрами: скоростью, давлением и живым сечением послужила основой для конструирования различных гидравлических и пневматических машин, устройств и приспособлений, получивших широкое применение в технике.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)