|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Постановка задачи линейного программированияЭкономико – математическое моделирования. Основные понятия и определения. Под моделью понимается либо некий образ объекта, интересующего нас, либо прообраз некоторого объекта или системы объектов. Под моделированием понимается конструирование модели и работа с ней, состоящие из ряда последовательных и взаимосвязанных стадий: постановка задачи, построение модели, ее исследование, проверка и оценка полученного на основе модели решения, реализация результатов решения. Экономическая модель - аналог совокупности производственных отношений, определенной общественно - экономической формаций, свойства которых и отношения между которыми описаны математическим методом. Модели можно классифицировать по разным признакам: -по характеру моделируемых объектов; -по сферам приложения; -по средствам моделирования Макроэкономические модели описывают экономику как единое целое со связями между агрегированными материальными и финансовыми показателями (ВВП, потребление, инвестиции, занятость, денежная масса, государственный долг, инфляция и др.). Равновесные модели описывают такие состояния экономики, когда результирующая всей воздействий на нее равна нулю. Как правило, равновесные модели являются описательными.
4. Математическое программирование Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Задачами нелинейного программирования называются задачи математического программирования, в которых нелинейны и (или) целевая функция, и (или) ограничения в виде неравенств или равенств. Задачи нелинейного программирования на практике возникают довольно часто, когда, например, затраты растут не пропорционально количеству закупленных или произведённых товаров. Динамическое программирование — это вычислительный метод для решения задач определенной структуры. В упрощенной формулировке динамическое программирование представляет собой направленный последовательный перебор вариантов, который обязательно приводит к глобальному максимуму Теория графов. Граф это множество точек или вершин и множество линий или ребер, соединяющих между собой все или часть этих точек. · Вершины, прилегающие к одному и тому же ребру, называются смежными. · Если ребра ориентированы, что обычно показывают стрелками, то они называются дугами, и граф с такими ребрами называется ориентированным графом. · Если ребра не имеют ориентации, граф называется неориентированным.
Постановка задачи линейного программирования. Общая постановка задачи Линейное программирование — наука о методах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения.Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений. Математическое выражение целевой функции и ее ограничений называется математической моделью экономической задачи. В общем виде математическая модель задачи линейного программирования (ЛП) записывается как Z(x)=C1X1+C2X2 + ... +СJXJ+... +СnXn_ max (min) 6. Формы представления ЗЛП. 1) Запись ЗЛП с помощью линейных неравенств и уравнений, каждые используются при составлении конкретных моделей задач.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |