|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Первая и вторая теоремы двойственностиОсновная теорема двойственности даёт правило нахождения оптимального решения двойственной задачи о оптимальному решению исходной задачи. Для нахождения оптимального решения двойственной задачи необходимо найти оптимальное решение исходной задачи симплекс-методом. Оптимальное значение двойственной переменной равно соответствующей оценке последней симплекс-таблицы плюс коэффициент целевой функции исходной задачи. 9. Третья теорема двойственности: Двойственные оценки показывают приращение функции цели, вызванное малым изменением свободного члена соответствующего ограничения задачи линейного программирования, т.е. В последнем выражении дифференциалы заменим приращениями. Тогда получим выражение: , если , тогда , Экономическое содержание третьей теоремы двойственности: двойственная оценка численно равна изменению целевой функции при изменении соответствующего ресурса на единицу. Двойственные оценки yj часто называются скрытыми теневыми или маргинальными оценками ресурсов.
10. Решения задачи линейного программирования графический методом. Алгоритм решения В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений Решение задачи линейного программирования графическим методом включает следующие этапы: · На плоскости X10X2 строят прямые. · Определяются полуплоскости. · Определяют многоугольник решений; · Строят вектор N(c1,c2), который указывает направление целевой функции; · Передвигают прямую целевую функцию c1x2 + c2x2 = 0 в направлении вектора N до крайней точки многоугольника решений. · Вычисляют координаты точки и значение целевой функции в этой точке.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |