АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

Читайте также:
  1. Абстрактно-теоретические и конкретно-экономические.
  2. Акробатические упражнения
  3. Во время занятий аэробными упражнениями по крайней мере пять важных процессов происходят в организме.
  4. ГЛАВА 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РЕКЛАМНОЙ ДЕЯТЕЛЬНОСТИ НА ПРЕДПРИЯТИИ
  5. Глава 1. Теоретические аспекты изучения зарубежной литературы в современной школе.
  6. Глава 1. Теоретические основы адаптации персонала
  7. ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОРГАНИЗАЦИИ ТРУДА РАБОТНИКОВ АППАРАТА УПРАВЛЕНИЯ
  8. Для чего необходимы упражнения ?
  9. Дыхательные упражнения - Дыхательная гимнастика по методу Стрельниковой
  10. Задачи и упражнения
  11. Задачи и упражнения
  12. Задачи и упражнения

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

1) Скалярное поле. Производная по направлению.

2) Градиент, его свойства. Инвариантное определение градиента.

3) Векторное поле. Поток векторного поля через поверх­ность, его физический смысл.

4) Формула Остроградского.

5) Дивергенция векторного поля, ее физический смысл. Инвариантное определение дивергенции. Свойства дивергенции.

6) Соленоидальное поле, его основные свойства.

7) Линейный интеграл в векторном поле, его свойства и фи­зический смысл.

8) Циркуляция векторного поля, ее гидродинамический смысл.

9) Формула Стокса.

10) Ротор векторного поля, его свойства. Инвариантное опре­деление ротора.

11) Условия независимости линейного интеграла от формы пути интегрирования.

12) Потенциальное поле. Условия потенциальности.

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

1) Найти производную скалярного поля по направлению градиента скалярного поля

2) Найти градиент скалярного поля , где — по­стоянный вектор, а — радиус-вектор. Каковы поверхности уровня этого поля и как они расположены по отношению к век­тору ?

3) Доказать, что если 5 — замкнутая кусочно-гладкая по­верхность и — ненулевой постоянный вектор, то

где —вектор, нормальный к поверхности .

4) Доказать формулу

где ; — поверхность, ограничивающая объем ; — орт внешней нормали к поверхности . Установить условия применимости формулы.

5) Доказать, что если функция удовлетворяет уравнению Лапласа

то

где — производная по направлению нормали к кусочно-гладкой замкнутой поверхности .

6) Доказать, что если функция является многочле­ном второй степени и — кусочно-гладкая замкнутая поверх­ность, то интеграл пропорционален объему, ограни­ченному поверхностью .

7) Пусть , где линей­ные функции от , и пусть — замкнутая кусоч­но-гладкая кривая, расположенная в некоторой плоскости. Доказать, что если циркуляция отлична от нуля,
то она пропорциональна площади фигуры, ограниченной контуром .

8) Твердое тело вращается с постоянной угловой скоростью вокруг неподвижной оси, проходящей через начало координат. Вектор угловой скорости . Определить ротор и дивергенцию поля линейных скоростей точек тела (здесь — радиус-вектор).

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)